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Abstract

The main purpose of this research is to develop a model that can be used to

solve combined spectral and spatial pattern recognition problems. Many models in

the past have focused on using only the spectral or spatial information available

to solve a recognition problem. The basis of my model is a multiobjective discrete

programming model developed by Benabdullah and Wright (B&W) (1). The model

will be modified and then tested by solving a real world problem with SPOT multi-

spectral imagery.

Several improvements were added to the B&W model, namely standard border

length accounting and control over which pixels are selected by the model. The model

was also improved to process more than one channel of imagery at a time. The model

was successful in locating a user specified target, but this was not possible with all

SPOT channel combinations. The Channel 2-3 combination caused the program to

abort after 5,000 iterations.

Three improvements to this model are necessary. In the combining of the two

channels, a multicriteria optimization, weighted sums approach was used. I manually

changed the weights in my program. An "ADBASE" representation of this model

would automatically try all the different lambda weights possible and thus find all

the noninferior solutions. Another improvement needed is to reformulate the pattern

recognition problem as a network with side constraints problem. This formulation of

the model would ensure integer solutions and should result in quicker solutions. The

final improvement is in the area of the objective function. In this thesis, several new

objective functions are developed, but I was not able to take advantage of them. This

problem was the result of the GAMS software limitations. The objective function

needs to be reformulated or a new software package selected that is compatible with

the new objective functions.

xiii



SPECTRAL AND SPATIAL PATTERN RECOGNITION

IN DIGITAL IMAGERY

L Introduction

1. 1 Background

Remote sensing from space is a common, every-day occurrence that is witnessed

nightly by millions of people as they watch the television weather report. In these

reports, satellite imagery is shown and briefly analyzed to explain the current weather

conditions. Although the era of artificial satellites began in 1957,1 the thought of

remote sensing from space is over 100 years old. In 1891, Ludwig Rahrmann of

Germany was given a patent for a " 'New or Improved Apparatus for Obtaining

Bird's Eye Photographic Views' " (20:528-529). Rahrmann's apparatus consisted

of a rocket-propelled camera system that was recovered by parachute. By 1907,

Alfred Maul expanded upon this rocket-camera system by adding gyrostabilization.

In 1912, he successfully launched a 200 x 250 mm format camera to a height of 790

m (22:43-44).2

After World War II, remote sensing from space began in earnest. Between

1946 and 1950, small cameras were mounted on captured V-2 rockets that were

launched from White Sands Proving Ground in New Mexico (20:529). These first

space photos were of inferior quality, but they were significant for two reasons: (1)

these photos were truly from space (altitudes ranged from 160 to 320 km) and (2)

1The first artificial Earth-orbiting satellite was launched in October 1957. This satellite was
named Sputnik and was launched b-, the former Soviet Union.

2The author of this thesis was not able to view the original source document due to lack of access.
The editor of referenced source listed the following information on the original source: Katz, A.H.
"Oberservation Satellites: Problems and Prospects." Ra.nd Paper P-1707. May 25, 1959, p. 1.
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they "demonstrated the potential value of remote sensing from space" (20:529). Ten

years after these V-2 rocket camera tests were complete, the US. launched the first

remote sensing satellite. The TIROS (Television Infrared Observation Satellite) me-

teorological satellite was launched in April of 1960 (34:8-9). As sensors on-board the

early meteorological satellites improved, "the prospect of looking through, not just

at, the [Earth's] atmosphere had begun" (20:529). After the initial success of these

early weather satellites, remote sensing from space was expanded into the manned

space programs of Mercury, Gemini, Apollo, and Skylab (20:529-530), (29:51-61).

Si ice these early years of the space age, space remote sensing systems Lave

improved and multiplied. Several commercial space systems that are currently oper-

ational are Landsat, NOAA (National Oceanographic Atmospheric Administration),

and SPOT (systeme probatoire d'observation de la terre). The potential of remote

sensing from space was also recognized by the U.S. military. The military is so de-

pendent on weather data that it has developed its own weather satellite called DMSP

(Defense Meteorological Satellite Program). In addition to this satellite system, the

U.S. military has also developed surveillance/reconnaissance-type satellites to moni-

tor its enemies. While these programs are highly classified, President Jimmy Carter

acknowledged the existence of photoreconnaissance satellites in 1978. He also added

that the U.S. would continue to build them (32:186).' As man has become depen-

dent upon the use of space remote sensing systems, a new problem has developed.

This problem is the analysis and interpretation of data collected from space remote

sensors.

3 The author of this thesis was not able to view the document cited by Stares due to lack of
availability. Stares listed the following information on the original source document: Documents on
Disarmament 1978, Publication 107 (U.S. Arms Control and Disarmament Agency, Washington,
DC, October 1980), p. 586.
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1.2 Problem Description

Before the data collected from a weather satellite is of any value, it must first

be analyzed and interpreted by the meteorologist. This same principle also holds

true for any user of data collected from a space remote sensor. Before imagery of

the Earth can be used, it must first be analyzed and interpreted. Herein lies the

problem, satellites are currently collecting data at a rate that is exceeding our rate

to analyze and interpret it.

With the advent of multispectral imagery, the image interpretation problem

has been even more compounded. Instead of taking one image of a particular area,

multiple images are now taken simultaneously. Several operational systems currently

have this multispectral capability. With the Landsat thematic mapper, seven images

are taken simultaneously. With the NOAA AVHRR, this number is five and with

the French SPOT system, this number is three. Rather than analyze and exploit

one image, image analysts are now required to analyze multiple images of the same

scene. This explosion in the amount of data requires computer analysis methods be

developed for the imagery analyst.

Two Landsat examples vividly illustrate this data. The Landsat satellite is

a multispectral sensor in sun-synchronous orbit at a nominal altitude of 900 km

(20:532, 535-540). At this altitude, the total field of view is approximately 43,000

km2 (20:544). This means that each image taken by Landsat contains this amount

of area. The level of detail that can be seen in one of these images is limited by the

resolution.4 Full spatial analysis and interpretation of one image, on a pixel-by-pixel

basis, would become too time consuming to accomplish manually. Another factor to

consider is the amount of data contained in one image. A nominal Landsat image

consists of 2,340 scan lines with 3,240 pixels per line for a total of 7,581,600 pixels

per channel. If the four-channel multispectral scanner (MSS) is used to image the

scene, four spectral observations per pixel will be collected for a total of over 30

4Resolution for Landsats 1-5 varies from 240 to 30 meters (21:536).

3



million points per image data set (20:538). Added on top of this are the gray values

that each pixel can assume. For Landsat MSS imagery, each pixel can take one of

64 shades of gray (21:541). If the pixels are multiplied by the 64 gray levels, a data

set of over 1.9 billion possible values results. Remember, this is the data set for only

one scene. If an analyst was able to interpret each data point at a rate of one point

per second, the time required to process the entire data set would take nearly one

year! Not all remote sensing satellites are like the Landsat system, but the point is

well illustrated. Some remote sensing satellites image at even higher gray levels. For

example, the NOAA AVHRR images at 1024 gray levels (7). The sheer volume of

data demands that much of the image analysis and interpretation be conducted by

computer methods.

With this increase in spectral data, the logical question is how to best pro-

cess the imagery. Should the spectral images first be combined and then processed

or should each spectral image be processed individually (and then combined for a

composite answer)? In Figure 1 these two approaches are shown shown graphically.

The first method, indicated by the solid lines, combines the images from the differ-

ent spectral bands. This composite image is then processed through a normalized

vegetative index for identification of the various land covers. These land covers are

then bounded in a spatial pattern recognition model and the final bounded regions are

output. The second method, indicated by dashed lines, is similar, but the different

spectral images are processed individually and combined at the output stage. These

methodologies will be explored in detail in this thesis research.

1.3 Research Objectives

In general, this thesis applies operations research methods to locate user spec-

ified spectral and spatial patterns in digital imagery. It is assumed that the analyst

knows what he or she is looking for and thus will know the spectral signature, size,

and border length of the object. The overall goal of this thesis is to develop a general

4
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purpose model that can be used by an imagery analyst to locate spectral and spatial

patterns. More specifically, the following objectives will be pursued in this research:

"• Analysis of Benabdullah and Wright Model: One of the first objectives is to

adapt the analysis of the Benabdullah and Wright Model. This model was

developed to bound areas of land based on the users inputs (1:1). As currently

written, the model is not designed to process -digital imagery. This model will

be reviewed from the perspective of an imagery analyst and improvements will

be added as necessary. This model will form the basis for creating a new model.

"• Method to Combine Single Channel Answers: In Figure 1, a method is needed

to combine single channels that have been processed. A method that will be

examined for this purpose is multiobjective linear programming. The concept

of an efficient frontier will also be explored in its application to digital image

processing.

"* SPOT Imagery Problem: Apply the modified model to solve a real-world prob-

lem with SPOT imagery. Show that the improved model can locate targets of

interest.

"• Comparison of Processing Methods: In the above figure, the two processing

approaches will be implemented and their accuracy and efficiency compared.

Efficiency will be measured in terms of solution accuracy and computer execu-

tion time.

"• Computer Programs: Develop all computer programs necessary to carry out

the above objectives.

"• Review Of Current Methods: In Chapter 2, 1 will review the current techniques

used in digital image processing to recognize spectral and spatial patterns.

Some of these techniques will be used to combine imagery channels before

processing by the model.

6



II. Literature Review

2.1 Introduction

In this chapter, several methodologies for extracting patterns from digital im-

agery will be explored. Before these techniques can be explored, it is necessary to

define what the term pattern recognition means. Tou and Gonzalez define pattern

recognition as "the categorization of input data into identifiable classes via the extrac-

tion of significant features or attributes of the data from a background of irrelevant

detail" (36:6). Harlow defines classical pattern recognition as "the means of deciding

in which class a given pattern belongs" (12:77). For this thesis, the input data are

confined to multispectral digital imagery. The "significant features or attributes"

to be extracted from the imagery are different land cover types. The "irrelevant

data" can be thought of as the data that remains unclassified once the "significant

features" have been extracted.

Pattern recognition techniques for multispectral imagery can be accomplished

in many fashions, but are usually based on one of three general characteristics of the

imagery. The extraction process can be based on the spectral, spatial, or temporal

characteristics of the data. This thesis will focus on the spectral and spatial charac-

teristics of the imagery data to extract the desired land cover types. Several of the

techniques currently used today are discussed in detail in the following sections. For

completeness, a short description of temporal pattern recognition is given.

Temporal pattern recognition uses time as an aid in feature extraction. For

example, crop surveys use multidate imagery to extract distinct spectral and spa-

tial changes throughout a growing season (21:668). Without the multidate images,

this analysis would not be possible since there would be no basis for comparison.

An example is helpful in demonstrating how temporal pattern recognition can be

accomplished. A field of winter wheat may be indistinguishable from bare soil when

7



freshly seeded in the fall and spectrally similar to alfalfa in the spring. If the signifi-

cant feature to be extracted was the winter wheat field, neither image (fall or spring)

would allow identification of the field. Even increasing the number of spectral bands

would not necessarily help. If both images are used, the wheat field could be eas-

ily extracted since no other field cover would be bare in late fall and green in late

spring (21:668). For the remainder of this chapter, only spectral and spatial pattern

recognition techniques will be explored since the scope of this thesis is confined to

these two methods.

2.2 Spectral Pattern Recognition

This method of pattern recognition is based on the principle that different

feature types result in different gray value patterns, often among several imaging

bands.' These patterns result from the "inherent spectral reflectance and emittance

properties" of the imaged features (21:668). In this context, a spectral pattern does

not refer to the geometric nature of the features.2 Rather the term refers to the "set

of radiance measurements obtained in the various wavelength bands for each pixel"

(21:668). Spectral pattern recognition thus refers to the classification processes which

use this pixel-by-pixel spectral information as the basis for extracting the desired

information.

In this chapter, three general approaches to spectral pattern recognition will be

explored along with several techniques under each approach. The three approaches

are single band classification, algebraic combinations, and multispectral classifica-

tion. The first only processes a single band of imagery at a time while the others

process multiple bands at a time.

'For this thesis, gray value is defined as the "number that is assigned to a position (x,y) on
an image and that is proportional to the integrated image value (reflectance, radiance, brightness,
color coordinate, density) of a small area, called a resolution cell, or a pixel, centered in position
(x,y) (24:316).

2 Note a spectral pattern will show up as a geometric pattern in a gray value scattergram.
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2.2.1 Single Band Classification In this portion of the chapter, methods for

recognizing spectral patterns in a single band of imagery will be explored. These

techniques can be applied to the output of a one band imaging system or to one band

of a multiband imaging system. The concept of segmentation as applied to single

band imagery is explained followed by a more detailed description of single band

classification techniques. In general, segmentation is "a process of pixel classification;

the picture is segmented into subsets by assigning the individual pixels to classes"

(28:57). As was mentioned earlier, the basis for this assignment into different classes

is by the different gray values (spectral characteristics) of the feature types. When

segmenting an image, the analyst is only interested in parts (or segments) of the

image. Segmentation is the process by which the image is broken into these parts

(28:56). The level of subdivision in the image depends on the problem being solved.

In other words, segmentation should stop when the objects of interest have been

found (11:413). In this section, two methods of spectrally oriented segmentation will

be described. They are gray level thresholding and level slicing.

2.2.1.1 Gray Level Thresholding Many types of images consist of two

regions which have different gray level ranges. Several examples include an image of

printed text or writing, an image of chromosomes, or an image of the Earth. In the

first two examples, the writing and chromosomes are darker than the background.

In the last example, the clouds are lighter than most types of terrain (28:61-62). In

general, gray-level thresholding is used to segment the image into two regions - one

for pixels below an analyst specified gray value and another for those pixels above

the threshold (21:626).

Selection of the threshold gray value is usually accomplished by viewing the

spectral histogram of the image. If the image consists of two spectrally different

regions, the histogram should have two peaks. The threshold is then selected as

the lowest gray value between the peaks. Ideally, threshold selection is an iterative

process (24:225). The selection guideline given above is just the starting point. After
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the threshold has been selected, the image is remapped into two analyst specified gray

values. If the initial segmentation does not result in the desired image, the histogram

of the original image is redisplayed, and a new threshold is selected and the image

is again remapped. This iterative process ends when the analyst has extracted the

desired regions of interest. A variation on this segmentation methodology is called

semithresholding. With this method, pixels that are lighter than the threshold can

be displayed as white and those darker than the threshold are displayed with their

original gray values, or vice versa3 (28:62).

Pattern recognition by thresholding is an effective and simple technique. but

it is also of limited use. As was mentioned earlier, the objects of interest must

have a characteristic range of gray levels different from the rest of the image. If

this condition is not met, this technique will not work since segmentation of the

objects of interest and background will overlap. Another limitation of this technique

is that the remapped display consists of only two gray values. This binary image

is useful for counting objects of interest in the image, but subtleties about each

object will be missing. This limitation can be partially overcome by the technique of

semithresholding mentioned above. Another pattern recognition technique of more

utility is level slicing which will be discussed in the next section.

2.2.1.2 Level Slicing Level Slicing is a pattern recognition technique

whereby the z axis of the image histogram is divided into several intervals or "slices".

Like the thresholding technique, all the gray values within a single interval are

remapped to a single gray value (21:627). With this technique, the analyst has

the option of selecting where the boundary limits of each interval will fall. By view-

ing the histogram, the analyst can set the intervals between regions (between the

histogram peaks, at the valleys), within a region (several intervals within a single val-

'The pixels lighter (greater in value) than the threshold do not have to be remapped to white.
The gray value is set by the image analyst. White is used since the contrast between the two
regions is enhanced.
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ley to valley range of the histogram), or a combination of both. Thus, the remapped

image appears to be a contour map with areas between the boundaries filled in with

a single gray value4 (21:627). For an example of this segmentation technique see

Figure 2 below.

6. 61 5. 1 2 6125. 5 6 11 1• 5

164 "61 3 6" 6• 625.56" " 1-

!16 .0 1 5141 q A; 11 "

Figure 2. Example of Segmentation by Thresholding

In this example, I used four intervals to segment the image. On the left are gray

values for six-bit imagery data.' In the right figure, the image has been segmented

based on Table 1 below.6

From this example, one can see the utility of this segmentation technique in

making sense out of all the gray value numbers in a digital image. This technique is

still limited by the condition that the objects .f interest must have a characteristic

range of gray values different from the background. However, with this technique

the whole image is still present in the remapped image. This is contrasted with

thresholding, where a binary image results and thus little can be derived about the

background. Which segmentation technique is best will depend on what the analyst

4Some texts refer to this segmentation technique as "density slicing" (12:86-87).
5With six-bit imagery, there are 64 possible gray values (26 = 64). Thus, the gray value range

is from 0-63.
6Note: These are not the actual gray values for the objects listed. The gray value numbers are

used to illustrate the concept of level slicing segmentation.
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Table 1. Level Slicing Look Up Table

Gray Value Output Actual
Range Color Object

0-15 Dk. Gray Road
16-32 Gray Stream
33-56 Lt. Gray Buildings
57-63 White Snow

is attempting to accomplish. "Level slicing is used extensively in the display of

thermal infrared images in order to show discrete temperature images coded by gray

level" (21:627).

2.2.2 Algebraic Combinations In this section, the process of recognizing spec-

tral patterns is expanded to include the simultaneous processing of two or more bands

of imagery at the same time. The multiple bands of imagery are combined through

algebraic combinations of the imaging bands. Two methods commonly used are ra-

tioing and vegetation indices. Some of these techniques are generic in nature while

others are specific to a particular imaging system.

2.2.2.1 Ratioing With multispectral imagery, the data can be analyzed

individually on a band-by-band basis or in a combination of two or more bands. Two

bands can be combined through addition, subtraction, or most commonly, division

of individual pixel gray values (12:87). This process of dividing the pixels in one

band by the corresponding pixels in another band is known as "ratioing" (23:189).

These ratios are very helpful to the image analyst in recognizing patterns since more

information is usually contained in the ratioed image than in any single band im-

age (21:390). There are two reasons why an analyst typically ratios an image. The

first is "that certain aspects of the shape of spectral reflectance curves of different

Earth-surface cover types can be brought out by ratioing. The second is that unde-
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sirable effects on the recorded radiances, such as the effect of variable illumination

(and consequently radiance) resulting from variations in topography can be reduced"

(23:189).

Two examples of ratioing are helpful in demonstrating the pattern recognition

capabilities of this method. Using image data obtained from the Landsat Multi-

spectral Scanner (MSS) in bands 5 (red) and 7 (near-IR), ratioing can be used to

differentiate among water, soil, and vegetation.7 The spectral reflectance curve for

water shows a steady decline between these two bands while there is a substantial

increase for vegetation. The curve for soil shows a gradual increase. By dividing

MSS band 7 by MSS band 5, a ratio results that can be used to identify water (ratio

< 1), soil (ratio > 1), and vegetation (ratio >> 1) (23:189-191). Spectral reflectance

curves for these types of land cover are shown in Figure 38.

A second example illustrates the reduction of topographic effects. If a sensor

images a mountainous area, part of the scene is sunlit while the other part is in

the shadow of the mountain. Given these varying illumination conditions, the gray

values for the particular land type will be substantially lower in the shadowed area

than in the sunlit area. "However, the ratio values for each land cover type are nearly

identical, irrespective of the illumination conditions" (21:650). Thus, a ratioed image

effectively reduces the gray value variation due to varying topography (21:650). In

general, "spectral ratios negate the effect of any extraneous factors in sensor data

that act equally well in all wavelengths of analysis" (21:392).

The mathematical expression of the ratio function is given by (15:135):

7Note: This same ratio, near-IR/red, can be applied to SPOT, Landsat Thematic Mapper (TM)
and NOAA AVHRR imagery. The proper bands for each system are as follows: SPOT (XS3/XS2),
Landsat TM (TM4/TM3), and NOAA AVHRR (AVHRR2/AVHRR1) (12:87-88).

'Note: These curves are not exact for each land cover type listed but are rather composites
of many land covers of the same type. For example, the water curve gives the general reflectance
response for lakes, rivers, oceans, etc.
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Figure 3. Reflectance Curves for Various Land Covers (13:19), (15:159)

GVij, = GVijk (1)

where GVij, is the ratioed gray value for the pixel located at row i, column j; GVijk

is gray value at the same location in band k; and GVij, is the gray value in band 1.

Although this is a simple equation, the image analyst is cautioned against applying

this methodology "blindly". There are several limitations both in the equation itself

and in the application of the ratio. Given the above equation, one can see that the

ratio can "blow up" when the gray value in the 1 band is zero. Another limitation of

this equation is that ratios less than one are common and thus will compress much

of the ratio data into a gray value of 0 or 1. A better algorithm to overcome these

limitations is given below (12:86-87), (21:655):

GVj, = Rarctan (GVi) (2)

where
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GVijr = Gray value in ratioed image

R = Scaling factor to place ratioed data in correct range

arctan (GV = angle (in radians) whose tangent is the ratio of the gray values\GVsji

in bands k and 1; if GVijt equals 0, this angle is set to 90 degrees.

"In the above equation the angle whose target is equal to the ratio of the

two bands can range from 0 to 90 [degrees], or 0 to approximately 1.571 radians.

Therefore, [GVij,] can range from 0 to approximately 1.571R. If an 8-bit display is

used, R is typically chosen to be 162.3, and thus [GVijrJ can range from 0 to 255"

(21:655).

Additional caution is necessary when generating and interpreting ratioed im-

ages. The first limitation is that ratioed images are "intensity blind". "That is,

dissimilar materials with different absolute radiances, but having similar slopes of

their spectral reflectance curves, may appear identical. This problem is particularly

troublesome when these materials are contiguous and of similar image texture"9

(21:654). A second limitation is that noise should be removed before ratioing the

images. The reason for this preprocessing is that "ratioing enhances noise patterns

that are uncorrelated in the component images" (21:654). A final limitation of ra-

tioed images is that they only compensate for multiplicative illumination effects. In

other words, division of the gray values only cancels those factors that act equally

well in the imaging bands and not those that are additive. (21:393, 654). For exam-

ple, haze is an additive factor which should be removed prior to ratioing. Another

solution to improve image pattern recognition is to use ratios of between-band dif-

ferences and/or sums (21:393, 654).

One of the most common ratios used in vegetation studies is the ratio of the

near-IR band to the red band. This ratio results in high values for healthy vege-

9One way to minimize this problem is to use a "hybrid color ratio composite" (21:654). This
solution is beyond the scope of this thesis and the reader should review cited references for additional
information.
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tation, low values for bare areas (soil), and values less than one for water (12:87),

(21:650), (23:189). This particular ratio is by no means the only one useful for

image interpretation. In fact, the number of ratios possible from a multispectral

image is n = b(b - 1) where n is the number of ratios possible and b is the number

of bands (21:651), (24:159). The ideal ratio for the image analyst depends "upon

the reflectance characteristics of the features involved and the application at hand"

(21:651). Even when the application is known, some trial-and-error is often nec-

essary to select the proper spectral ratio (21:654). In addition to the simple two

band ratio explained in this section, there are many more combinations of multi-

spectral data that can be used for spectral pattern recognition. These combinations

are collectively called "vegetation indices" and will be discussed in detail in the next

section.

2.2.2.2 Vegetation Indices One of the main applications of multispec-

tral imagery is the monitoring of the world's food and fiber crops. The monitoring

of these crops using in situ techniques is often not practical and thus, the monitor-

ing has been accomplished by remote sensing spectral measurements. Much of the

research in this area has focused on the analysis of Landsat Multispectral Scanner

(MSS) and Thematic Mapper (TM) imagery. A common goal of this research has

been to reduce the many bands of data down to a single value per pixel. This value

is helpful in measuring "canopy characteristics [such] as biomass, productivity, leaf

area, and/or percent [of] vegetative ground cover" (15:157-158). This section will

identify several algorithms to extract this information from multispectral imagery.

While the Landsat satellite may be more commonly recognized, the National

Oceanic and Atmospheric Administration (NOAA) meteorological satellites have

also been used extensively for vegetation monitoring. With the advanced very high

resolution radiometer (AVHRR) on board the NOAA satellite, two simple indices

have developed to recognize vegetation in multispectral imagery. These indices are
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called the vegetation index (VI) and the normalized vegetation index (NVI). Their

respective equations are (21:597):

VI =CH2 - CH1 (3)

and
CH2 - CH1

NVI = CH2 + CH1 (4)

where CHi and CH2 represent AVHRR channels 1 and 2 respectively. In general,

vegetation areas will result in high values for either index due to their relatively high

near-IR (CH2) reflectance and low red (CHI) reflectance. In contrast, clouds, water,

and snow have negative values due to their larger visible reflectance than near-IR

reflectance. Rock and bare soil have similar reflectance values in both bands so their

index value is close to zero (21:598). In operational use, the NVI is usually the

preferred index since it compensates "for changing illumination conditions, surface

slope, aspect, and other extraneous factors" (21:599). In highly vegetative areas, the

NVI will vary from 0.1 to 0.6 depending on the vegetation density and greenness

(21:599). The higher NVI numbers are associated with higher vegetation density

and greenness. This same index can be used with Landsat MSS imagery if the

appropriate substitutions are made.

Many vegetation indices have been developed over time to exploit the multi-

spectral nature of Landsat imagery. In the following paragraphs, vegetation indices

for the Landsat MSS and TM are explained.

* Normalized Difference Vegetation Index The NVI index used for AVHRR data

can also be used with Landsat MSS imagery. The index is renamed as the Nor-

malized Difference Vegetation Index (NDVI) and is defined as follows (23:192-

193):
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MSS7 - MSS5
NDVI = MSS7 + MSS5 (5)

where MSS 5 is MSS band number 5 (red) and MSS7 is MSS band number 7

(near-IR). Since the same bands are used (red and near-IR) in both the NVI

and the NDVI, the results for the NDVI can be interpreted in the same manner

as the NVI.

As we shall see, the number of different indices is considerable but many of the

indices are redundant in information content. For this reason, they should be

applied judiciously (15:158), (25:169-187). "If the principle of Occum's Razor

('don't increase the complexity of the problem without reasonable cause') is

invoked we might conclude that the [near-IR/red ratio and NDVI] described

above are sufficient for most causes" (23:193).

e Transformed Vegetation Index Deering et al modified the NDVI equation to

produce the "transformed vegetation index" (TVI). In the TVI equations, 0.5

was added to eliminate negative values. They also extended the basic NDVI

equation to create -% similar algorithm using MSS5 and MSS6. The TVI algo-

rithms are given below1 ° (15:160):

MSS6 - MSS5
NDVI6 = MSS6 + MSS5 (6)

MSS7 - MSS5
NDVI7 = MSS7 + MSS5 (7)

TVI6 = V/NDVI6 + 0.5 (8)

TVI7 = vrNDVI7 + 0.5 (9)

"0 The writer of this thesis was not able to review the original source document for the TVI
algorithms due to lack of availability. The cited reference gave the following information on the
original source: Deering, D.W. et al. "Measuring Forage Production of Grazing Units from Landsat
MSS Data," Proceedings, 10th International Symposium on Remote Sensing of Environment, Vol
2, 1975. pp. 1169-1178.

18



In their research, Perry and Lautenschlager found that the addition of 0.5

did not always eliminate the negative values. Therefore, they proposed new

algorithms to correct for this deficiency (15:160):

NDVI6 + 0.5 _x Abs (NDV16 + 0.5) (10)
TVI6 = Abs (NDVI6 + 0.5) A

NDVI7 + 0.5
TV17 = Abs (NDVI7 + 0.5) - Abs (NDVI7 + 0.5) (11)

where Abs is the absolute value and 0/0 is defined to equal one. The same TVI

equations developed foi Landsat MSS imagery can also be applied to Landsat

TM imagery. The TVI equation for Landsat TM data is defined as (21:661,

663):

TVI = TM4 - TM3 ] 1/2
ITM4 + TM3 0

Like the NVI, the TVI value for Landsat MSS and TM imagery is "proportional

to the amount of green biomass present within each pixel" (21:663). A Landsat

image can be calibrated by relating ground-based biomass measurements to the

TVI pixel values. "Separate calibration relationships must be established for

each cover type and those become the quantitative basis upon which to depict

the biomass present in similar [areas] throughout the scene" (21:663).

Perpendicular Vegetation Index Another VI that can be used to recognize veg-

etation, soil, and water spectral patterns is the Perpendicular Vegetation Index

(PVI). This index is based on the premise that there is a discrete axis in Land-

sat MSS four space on which the soil pixels lay. This soil axis contains the range

of soils with low reflectance (wet) to those of high reflectance (dry) (15:167),

(23:200-201). This index is perpendicular in the sense that the perpendicular

distance from the soil axis, in the near-IR - red feature space, is computed for
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each pixel" (13:88). In general, the greater the amount of vegetation in the

pixel, the greater the value of the PVI (13:88), (27:307-312). Richardson and

Weigand developed the PVI algorithms given below (27:307-312):

PVI7 = V(0.355MSS7- 0.149MSSS)
2 

+ (0.355MSS5 - 0.852MSS7)
2  (13)

PVI6 = V(0.498MSS6 - 0.457MSS5 - 2.507)2 + (2.734 + 0.498MSS5 - 0.543MSS6)
2  

(14)

In general, interpretation of the PVI values are as follows: PVI < 0, water; PVI = 0, soil; and PVI > 0,

vegetation (13:88), (23:202).

While these algorithms appear to be helpful in differentiating among vegeta-

tion, soil, and water, they should not be used with some forethought. The

soil axis used in the PVI equations is based on 16 data points in Texas, from

four dates in 1975. "It is unlikely that such a small and geographically-limited

sample could adequately define the soil line on a universal basis" (23:201). To

resolve this limitation, a locally-valid equation relating soil pixels in MSS7 -

MSS5 (or MSS6 - MSS5) two space is needed. Secondly, the PVI equations are

"based on the assumption that the maximum digital count in Landsat MSS

bands 4, 5, and 6 is 127 with a maximum of 63 in Landsat MSS band 7"

(23:201).

Perry and Lautergen also concluded that the PVI equations were computation-

ally inefficient and that they did not distinguish between the left and right side

(green vegetation and water) of the soil line. To overcome these deficiencies,

they developed the following equations (25:169-187):

PV16 - 1.091MSS6 - MSS5 - 5.49 (15)
1.0912 + 1

PV17= 2.4MSS7 - MSS5 - 0.01 (16)-ý/2.4 2 + 1

"This method is sort of an opposite of canonical components.
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* Tasseled Cap Transformation Another VI that is based on soil occupying an

axis in four dimensional Landsat MSS space is the "tasseled cap transforma-

tion" (23:200). With this transformation, the four MSS bands are used to

create four new axes that are useful for agriculture monitoring. This trans-

form creates the following new indices: the soil brightness index (SBI), the

green vegetation index (GVI), the yellow vegetation index (YVI), and the no-

such index (NSI). The SBI measures variations in soil background reflectance.

The GVI measures variations in the vigor of green vegetation, while the YVI

measures variations on yellowing of senescent vegetation. The NSI is related

to atmospheric effects. Research has shown that the first two indices contain

nearly all the scene information - 95 to 98 percent. This transformation has

been so named, due to the cap region formed by vegetation in the brightness

- greenness plane12 (15:161), (21:660), (23:202-203).

It is this cap region in the greenness - brightness plane that can be used to

recognize agricultural vegetation on a Landsat MSS image. Specific regions

outside this cap area have been identified as water, concrete and urban, and

forest and natural vegetation. Overall, this transformation is a useful one for

agriculture research since it has been rigorously tested and extensively used

(15:162). It should be noted that the tasseled cap transformation has been

extended to use Landsat TM data (21:660).

The list of vegetation indices goes on but Perry and Lautenschlager have shown

that many of the most widely vegetation indices are equivalent. For example, they

found that all TVIs were equivalent to their corresponding band ratios. Therefore,

12 All three references cited a single Kauth and Thomas document as the original source for this

information. The author of this thesis was not able to view the original source document due to
lack of availability. The following information was given on this document: "The Tasseled Cap - A
Graphic Description of Spectral-Temporal Development of Agricultural Crops as Seen by Landsat,"
Proceedings: 2nd International Symposium on Machine Processing of Remotely Sensed Data. West
Lafayette, Indiana: Purdue University, 1976. pp. 41-51.
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additional information may not be gained when two or more VIs are applied to the

same image data (25:169-182).

2.2.3 Multispectral Classification "One of the most widely accepted applica-

tions of pattern recognition techniques to image processing has been the assignment

off pixels to land use categories through multispectral classification" (21:96). This

process requires that multiple images of a specific geographic region be taken in

several spectral bands and that the images be in good registration (15:177). The

"pattern" to be recognized is formed by the set of gray values for a single pixel on

each of the spectral bands. Identification of the pattern results in a remapping of each

pixel into a particular land cover type (23:276). This labeling of spectral patterns

into land cover types may be performed using either of two methods: supervised or

unsupervised classification.

2.2.3.1 Supervised Classification With this type of classification, a pri-

ori information about the land cover types and location is available. The image an-

alyst "supervises" the classification process by specifying to the computer algorithm

the ideal spectral patterns for each land cover type. Each pixel's spectral pattern

is then compared to each of the ideal spectral templates and labeled with the name

of the land cover it most resembles (21:668), (23:276). The first step involved in

the supervised classification process is the mapping of these ideal spectral templates

(sometimes known as training sets) into the n-space created by the n bands used to

image the geographic region. For ease of explanation and understanding, only two

imaging bands will be used in the discussion on supervised classification. However,

it is rare that just two channels would be used in this analysis. The techniques

discussed below can be applied to any number of channels (or bands) when im-

plemented numerically (21:671). Three methods using the supervised classification

process are the minimum-distance-to-means classifier, the parallelepiped classifier,

and the maximum likelihood classifier.
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* Minimum-Distance-to-Means Classifier This procedure begins with the train-

ing sets displayed graphically in two space (defined by two channels) as a

scatter plot (i.e. a 2-D histogram). 13 Contrary to what one may think, "the

pixels within each class do not have a single, repeated spectral value" (21:672).

Therefore, for each land cover type "clouds of points" will form based on the

spectral response patterns. These clouds "illustrate the natural centralizing

tendency - yet variability - of the spectral properties found within each cover

class" (21:672).

An unknown pixel is classified by computing the distance between the pixel's

location and each of the land cover means. After computing the distances,

the unknown pixel is assigned to the land cover whose mean is closest."4 This

commonly used decision rule is mathematically simple and computationally

efficient but it has one major limitation (15:209-211), (21:672-673). This clas-

sifier "is insensitive to different degrees of variance in the spectral response

data" (21:673). Due to this limitation, this classifier is not used where spectral

classes are close to one another and have high variance (21:675). However,

this technique does give convenient linear boundaries between each land cover

type.

An example of this method of classification is shown in Figukc 4. I this figure

four types of agricultural crops are plotted in the 2-D space created by two

imaging bands. The A's represent alfalfa, the B's are beans, the C's are corn

and the W's represent wheat. The mean of each agricultural type is plotted

with a solid dot."5 Two unclassified points, X and Y are also plotted on this

scattergram. Using the technique described above, the Euclidean distance from

each unclassified point to each of the agricultural means is computed. In this

"3 Note this approach can also be applied in 1-space or n > 2 space.
14The computed distance can be Euclidean or "city block" (for computational efficiency with

some loss of accuracy) distances.
15 Note that the means are calculated by first classifying the pixels in some training set of data

(which may be the data under consideration).
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example, the X is classified as beans while the Y is classified as alfalfa. In

Figure 5 the linear boundaries (based on minimum distance) for each crop

type are shown.

255

A4.A A:.. ...

B B WW

C C

0 I

0 Channel 2 255

Figure 4. Example of Minimum Distance to Means Classifier. Adapted from Lille-
sand, p. 673, 1987.

* Parallelepiped Classifier One method for introducing sensitivity to category

variance is to consider the range of gray values for a particular land cover.

This range can be computed by taking the highest and lowest gray value for

each training set (or land cover type) in each band. These boundaries form

an n-dimensional parallelepiped in feature space (15:206), (21:674). For the

2-dimensional case, a rectangle would be formed around the cloud of points for

each land cover type. An unknown pixel is assigned to a particular category if

it falls within the specified ranges or assigned to an unclassified category if it

does not fall within any of the land type ranges (15:206-207), (21:674).
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Figure 5. Linear Boundaries For Each Crop Type

This classifier is also very fast and computationally efficient but difficulties

arise when category ranges overlap. When an unknown pixel lies in an overlap

area, the computer algorithm may not know how to classify this pixel. This

overlap is caused largely because categories with high covariance are poorly fit

by rectangular decision regions (21:674-675). More importantly, the overlap

may occur simply because two classes are just so similar that their variability

inherently causes this problem. A method that accounts for this problem is
discussed in the next section.

By using the same data set as the previous example, the parallelepiped

classifier can be contrasted with the minimum distance to means classifier. In
Figure 6, a rectangle encloses each cloud of points. Each rectangle effectively
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bounds the spectral ranges for each agricultural crop. Using this classifier, the

X is again classified as beans but the Y remains unclassified."6

255 -

_Y- w
B B

C C

0-

0 Channel 2 255

Figure 6. Example of Parallelepiped Classifier. Adapted from Lillesand, p. 674,
1987.

* Maximum Likelihood Classifier The maximum likelihood classifier takes into

account the variance and covariance of the training data set when classifying

an unknown pixel. This process is built on the assumption that the category

training data set is Gaussian (or normally distributed). From the training data

set, the probability density function for each category can be computed. These

density functions are used to classify an unknown pixel by computing the prob-

ability that the pixel belongs to each category. The pixel is then assigned to

the category with the highest probability or assigned to an unclassified cate-

gory if all the probabilities are below an analyst specified threshold (15:212),

"16Note that just because a pixel is labelled as a "B" here, it does not mean that it is not really a
low probability-outlying "C", with respect to it's actual content. In fact, all classification schemes
are based on statistical judgement calls based on various criteria for judging.
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(21:675-676). Unlike the Minimum-Distance-to-Means Classifier, this method

results in quadratic boundaries between land cover types.

In Figure 7, the probability density functions (PDF) are displayed for each

agricultural crop. The PDF's value increases as the ellipses grow smaller. Using

this classifier, the X is classified as beans but the Y remains unclassified.

255

"- W

00
0 Channel 2 255

Figure 7. Example of Maximum Likelihood Classifier. Adapted from Lillesand, p.
677, 1987.

2.2.3.2 Unsupervised Classification Unsupervised classification differs

from supervised classification in that the former does not use training data as the

basis for classification. Rather, this classification method uses algorithms to group all

the pixels in an image into their natural groupings based on their gray value patterns.

The premise for this method is that gray values for a given land cover should be close

together in measurement space, while the gray values for different land covers should

be relatively well separated. Initially the identity of these groupings (or clusters) are
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unknown and must be compared to ground reference data such as maps to determine

the identity of the pixel groups (21:685). One of the primary advantages of this

method is that the classifier identifies distinct spectral classes within the image. With

supervised methods, this will not always hold true. There are hundreds of clustering

algorithms for determining the natural groupings within a data set (15:215). One

method of clustering that will be explained is the K-Means approach.

Similar to the supervised classifiers, K-Means Clustering begins with all the

image pixels plotted in scattergram format in n-dimensional feature space. The

analyst then dictates the number of clusters to be found in the image data.17 The

algorithm then arbitrarily locates that number of cluster centers. Each pixel is then

assigned to the closest cluster mean. After all the pixels have been classified, the

cluster centers are recomputed and the pixels are reclassified. This iterative approach

continues until there is no significant change in the location of the cluster center.

Once this step has been reached, the analyst determines the identify of each spectral

class. One drawback to the K-Means clustering is that it is very computationally

intensive (21:686).

2.3 Spatial Pattern Recognition

"Spatial pattern recognition involves the categorization of image pixels on the

basis of their spatial relationships with pixels surrounding them" (21:668). With

spatial pattern algorithms, patterns can be assigned to classes on the basis of image

texture, pixel proximity, size, shape, orientation, location, repetition, or context

(14:111), (21:668). Spatial pattern recognition is in direct contrast to spectral pattern

recognition where the pixels are assigned to a class on a pixel-by-pixel basis. With

spectral pattern recognition, the pixels can be entered in any order and the same

classification results. This is not true for spatial pattern recognition. With this form

17A modification of the image analyst specifying the number of clusters is to allow the algorithm

itself to choose the number of significant features.
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of pattern recognition, pixels are classified on the basis of their neighboring pixels.

Spatial pattern recognition tends to be more complex and computationally intensive

(than spectral pattern recognition) since the classifiers attempt to mimic the spatial

synthesis done by the analyst during image interpretation (21:668). This section will

review several spatial pattern recognition techniques used with digital imagery.

2.3.1 Correlation Filtering A basic method for finding spatial patterns in

digital imagery is through correlation filtering. With this method the target to

be located is transformed into its frequency components through the application of

the Fourier transform. The target can then be described by a combination of sine

and cosine waves with various amplitudes, frequencies, and phasesis (21:644). The

image in which the target is to be located is also processed by the Fourier transform.

The analyst then attempts to locate a frequency match in the image by scanning

through the entire image. As the correlation between the target template and a

location in the image rises, the probability that a target is present also increases.

At a user specified threshold, the analyst indicates where the probable targets are

located in the image. This method of spatial pattern recognition is implemented in

the frequency domain19 (21:644). The spatial pattern recognition methods in the

following sections are implemented in the spatial domain.

2.3.2 Line Detection A common method for locating thin lines is to convolve

the image with a directional derivative filter 20 (11:414), (28:113). Since line pixels

will be located on the basis of shape, rather than their gray values of the line and

background, "it is reasonable to use a filter function based on a derivative of the

line pattern" (28:113). Using the 3 x 3 mask shown in Figure 8 below, the image is

"8 For a detailed explanation of the Fourier transform the reader should consult an electrical
engineering textbook.

"9The matched filtering approach described here is implemented in the frequency domain, but
correlations can also be performed in the spatial domain.

"2°Convolution is defined as "digital image filtering usually performed using an n x n mask"
(15:367). The value of n is usually odd.
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convolved by computing the sum of the products of the mask weights and the pixels

within the masks. Mathematically, the convolved value of the center pixel is given

for a 3 x 3 window by:

Cij --- Wl,lZi+l,j+l + WI,2Zi+l,j + Wl,3Zi+l,j.l +

w2,1zij+l + w2,2zi~j + W2,3Zij- 1 + (17)

W 3 ,1 Zi_ Ij + I "l + W3,3Zi_1j_

where

CiJ, Convolved value of the pixel in location (i,j),

wi,j,= Mask weight (or coefficient), and

zij = Gray value of pixel in location (ij).

W 11 W 12 W 13

W 2 1 W 22 W 23

W 3 1 W 3 2 W 33

Figure 8. General 3 x 3 Convolution Mask

A mathematical example helps to illustrate this concept. If an analyst wants

to remove spikes in imagery such as noise, a smoothing filter can be used. A simple

smoothing filter is shown in Figure 9. In this example, the 3 x 3 smoothing filter

has weights of one ninth in each cell. To convolve the center pixel of the middle 3

x 3 image, each pixel gray value is multiplied by the corresponding weight in the
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smoothing filter. In this example, each pixel is multiplied by one ninth. The nine

products are added together for the convolved value of the center pixel. The result of

this filter is that the original gray value of 200 has been reduced to 96, which is more

in line with the surrounding gray values. With this example, only the center pixel

can be convolved because eight pixels need to surround the pixel being convolved.

More generally, the mask is moved to place its center over each pixel to calculate the

convolved value for each pixel.

1/9 1/9 1/9 85 56 1J72

1/9 1/9 1/9 90 200 100 96

1/9 1/9 1/9 75 88 98

Smoothing Gray Values Convolved
Filter Pixel Value

Figure 9. Convolution Example

Using the masks shown in Figure 10, lines of one pixel thickness can be found.

To locate the line, the center of the mask is placed around the first pixel in the

first row and then systematically moved pixel by pixel through each row. With a

constant background, the maximum response will result when a line passes through

the middle row of the horizontal mask. A similar maximum response results for lines

oriented in the manner of the other filter masks21 (11:415).

2.3.3 Directional Edge Detection A more common method of spatial pattern

recognition is edge detection. This is true because thin lines do not frequently occur

21There are limitations on these line masks but discussion of this topic is beyond the scope of
this thesis. For more information, reference Rosenfeld and Kak, pp. 114-117.
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Figure 10. Line Detection Masks (11:416)

in digital imagery (11:415). "Edge detection is an image segmentation method based

on the discontinuity of gray [values] or texture at the boundary between different

objects. Such a discontinuity is called an edge. An edge separates two regions of

relatively uniform but different gray [values] or texture" (24:225). Although there

are many edge detection algorithms, only two methods will be explored below.

2.3.3.1 Running Difference One simple method for detecting edges is

called the running difference. With this method, the image is shifted one pixel (either

horizontally, vertically, or diagonally) and the corresponding pixels in the original

and shifted image are differenced.22 If there is no difference, a mid-gray value (e.g.

127) is substituted for the pixel. If the difference is positive, a darker gray value (e.g.

30) is substituted and a lighter value (e.g. 200) is substituted if there is a positive

difference.23 Thus, transitions from light to dark regions produce white lines and

transitions from dark to light produce dark lines. The result of this operation is a

gray image with white and dark lines surrounding the objects24 (15:144). It should

be noted that this processed image requires shifts in more than one direction.

"22Note: Image is shifted in the direction of the edge orientation to be found (e.g. image is shifted
horizontally to find horizontal lines). Since the image is limited in the directions it can shift, only
edges in the orthogonal directions can be found.

23These gray values were assigned on the basis of eight bit data. Therefore, the range of gray
values is from 0 to 255.

24The author of this thesis was not able to view the original source document due to lack of
availability. Cited reference gave the following information on the original document: Handbook on
Image Processing. Spatial Data Inc., Goleta, California 1975.
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2.3.3.2 Sobel Operators Another method for recognizing edges is the

Sobel Operator method. These operators are based on the mathematical principle of

the gradient.2" The gradient is calculated by taking the partial derivatives af/1x and

Of/Oy at each pixel location. In digital imagery, derivatives may be implemented by

differencing. Differencing alone is limited since it enhances noise. Sobel operators

are optimal since they provide differencing as well as a smoothing effect on the

image. Sobel operators convolve an image using the 3 x 3 masks shown in Figure 11

(11:418-419).

-1 -2 -1 -1 0 1

0 0 0 -2 0 2

11 2 1 -1 10 11

Horizontal (X) Vertical (Y)

Figure 11. Sobel Operators (11:418-419)

As was mentioned earlier, the mask systematically operates upon each pixel in

the image. The result is a gradient image with lines oriented in the direction for the

particular Sobel operator.

2.3.4 Texture Enhancement Before the concept of texture enhancement can

be explained, it is necessary to define the term texture in the context of digital

imagery. Texture can be defined as "the spatial distribution of the gray [values] and

discrete tonal feature" in the vicinity of each pixel (14:124, 245). In other words,

texture is a measure of how much a pixel varies from its surrounding neighborhood.

In the section on edge detection, location of the edge was based upon abrupt changes

25 For a given location, the gradient calculates the direction of the maximum rate of change for a
given function. For this thesis, this function is defined as the digital image.
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in gray values. This same concept can be applied to changes in texture to locate

region boundaries. This approach is valid since changes in texture usually indicate

a different region (24:232). Thus, the goal of texture enhancement is to emphasize

the boundaries between regions of homogeneous texture (35:32).

There are a variety of enhanced algorithms to recognize changes in texture

patterns. In general, they all compare the gray value of the pixel of interest to

the average of the surrounding neighborhood. Any departure from the average is

exaggerated and remapped onto the output data set. One of the simplest texture

enhancement methods is the Laplacian texture enhancement. This process also uses

a filter to convolve the image, pixel by pixel. This mask is shown below in Figure 1226

(35:32-33). Filters of this sort are in the category of non-directional, high pass, high

boost filters. The overall effect of this process is "to 'sharpen' all boundaries, and

to increase the apparent resolution" (35:33). For this reason, texture enhancement

is particularly effective on blurred images (23:258), (24:137).

0 -1 0

-1 5 -1

0 -1 0

Figure 12. Laplacian Texture Enhancement Mask (35:32-33)

26Note: This mask is not the one for computation of the Laplacian. The digital Laplacian at
location (x, y) of an image f is given by (V2f)(X, y) = [f(Z + 1, y) + f(X - 1, y) + f(x, y + 1) +
f(x, y - 1)] - 4f(x, y) (28:89). The given mask subtracts the Laplacian from image f (23:258-259),
(24:137).
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2.3.5 Region Oriented Segmentation This method of pattern recognition con-

sist "of sequentially extracting solid objects or regions, rather than edges or thin

curves, from [an image]" (28:138). The goal of this process is to extract objects of

interest from the image rather than to partition the complete image (28:138). This

is in contrast to the edge detection algorithms which only outlined the regions of

interest. Two methods of region oriented segmentation will be discussed: region

growing and split and merge.

2.3.5.1 Region Growing As the name implies, region growing is a pro-

cess of grouping pixels together to form regions. One of the simplest region growing

methods is by pixel aggregation. This method starts with "seed" pixels and then

adds (or grows) additional pixels that meet the decision criteria. The decision crite-

ria may be based on texture, relative position to seed pixel, size and shape of object

to be found, and gray value. When new pixels are accepted, the decision process is

repeated for the new neighboring pixels. The growth of the region will terminate

when no acceptable neighbors exist (11:458-461), (28:140).

An important step in this process is the selection of the seed pixels since dif-

ferent seed pixels can cause different results. To begin the growing process, a pixel

should be chosen which is very typical of the object (or region) of interest. There

are two ways to identify these seed points. The first way is to have a priori knowl-

edge about the objects to be found. If this is the case, these ideal values should be

selected as the seed points. A second method is used if a priori knowledge is not

available. The property values of each pixel are first measured and then plotted in

n-dimensional space, where n equals the number of property values measured per

pixel. A scatter plot of these values will show natural groupings of clusters. A pixel

which is located near the centroid of a cluster can be selected as a seed pixel. Once

the growing begins, the aggregation of additional pixels may depend on their prop-

erty values relative to the growing object (28:61, 141). This statement leads to the

second important step in this process - selection of decision criteria. An accurate
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description of the object of interest must be found in the decision criteria. If not,

the region may not be found. For example, criteria based on gray value alone may

be inadequate if connectivity and adjacency are also important (11:460).

2.3.5.2 Split and Merge At the opposite extreme, the digital image is

taken as a single region that is partitioned by repeated splitting. One method of

dividing the image is by bisection. If the image does not meet the decision criteria,

the image is divided into quadrants.2" If a quadrant does not meet the decision

criteria, we divide it into subquadrants and so on. As the image is split into various

sized regions, adjacent regions that meet the decision criteria can be merged. This

splitting and merging continues until no further merging or splitting is possible

(11:461-463), (28:148-149). The end result is the objects of interest identified in

the image.

2.4 Conclusion

In this chapter many of the common methods used for spectral and spatial pat-

tern recognition were discussed. For spectral pattern recognition, the three general

approaches explained were single band classification, algebraic combinations, and

multispectral classification. In the next chapter, three of the methods explained will

be used to combine two bands of imagery: Vegetation Index, Normalized Vegeta-

tion Index, and band ratioing. For spatial pattern recognition, five approaches were

explained: correlation filtering, line detection, directional edge detection, texture

enhancement, and region oriented segmentation. In spectral pattern recognition,

pixels are assigned to a class on a pixel-by-pixel basis. This is in direct contrast

to spatial pattern recognition where pixels are classified based on their neighboring

pixels. Of the two recognition approaches, spatial pattern recognition tends to be

the more complex and computationally intensive. Each method has its advantages

"27The decision criteria mentioned under the split and merge method are the same type as those
mentioned in the region growing section.
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as well as it limitations. The best method for an image analyst depends on the type

of image data and the specific image exploitation problem. In the following chapter,

a method for combining both spectral and spatial information (of a particular land

cover type) will be explored. By combining the two types of information, a model

can be developed to find land cover types specified by the image analyst.
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III. Methodology

The basis of my model, to recognize spectral and spatial patterns, is a multiob-

jective discrete programming model developed by Benabdullah and Wright (B&W)

(1). This model was created to bound multiple areas of land based on the user's

inputs. The model is limited in its capacity to finding/bounding rectangular areas

(1:1). As such, the model was not originally designed to process digital imagery.

The following paragraphs explain the principles of the B&W model as applied to

digital imagery. The equations of this model are first explained, followed by several

example problems, and finally an analysis of the results. Following this analysis of

the B&W model, the model is examined from the perspective of an imagery ana-

lyst. Significant shortfalls are identified and changes to the model are proposed. If

this model is applied to digital imagery, the analyst is required to know a priori the

following target characteristics: size, border length, and spectral range. The last

section of this chapter explains a method for processing more than one channel at

a time. With multispectral imagery several channels are available so a method is

needed to process more than one channel.

3.1 Benabdullah & Wright Model

For the bounding of multiple subregions within a digital image, the following

equations are given (1:9-12):

Minimize Z = ,wk [tCiXik (18)

subject to:

xik = Mk Vk (19)
i=1

Xik - Xjk - Pijk + Nijk 0 Vi,j E Ti, k (20)
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K

S•k <1 Vi (21)
k=1

n

E E sij(Pilk + Nijk) = Lk Vk (22)
i=1 jET,

Xik, Pijk, Nijk = 0, 1 Vi,j iE Ti, k. (23)

Each of the variables in the above equations need to be explained before the model

can be appreciated and also run. In Equations 18, 19, 20, 21, and 23, Xik is a binary

variable that indicates whether a given pixel, i, is assigned to subregion k:

1 if pixel is assigned to subregion k
Xik = (24)

0 otherwise.

The range of i is from 1 to n where n is the total number of pixels to be considered

for incorporation into a subregion. In the equations listed above, k is the number of

subregions to be found in an image. In the cost objective function (Equation 18),

wk is the weight for subregion k, and ci is the cost for incorporating pixel Xik into a

subregion. The objective function seeks to minimize the cost of the k subregions.

In Equation 19 (first constraint), Mk represents the size of the kth subregion.

For a digital satellite image, this would equate to the number of pixels in the tar-

get subregion. This interpretation can be seen in the equation - the sum of the

incorporated areas equals the size of the kth subregion.

The second constraint (Equation 20) is necessary to ensure nonoverlapping of

pixels between subregions (1:9). This constraint also defines the binary variables

Pijk and Nijk.

For any adjacent [pixels] i and j, if only one of [the pixels] is selected
(xi = 1, xi = 0 or xi = 0, xj = 1), then either Pij or Nij must equal
1 and the other must equal 0. For example, if at optimality [pixel] i is
acquired (xi = 1) and [pixel] j is not (xj = 0), then Equation [20] would
be satisfied if Pij = l and Nij = 0. If both [pixels] i and j are acquired
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(xi = xj = 1) or neither is acquired (xi = xj = 0), then Pij and Nij must
both equal 1 or both equal 0. Because the external border function is
being minimized, then the smallest values assigned to Pij and Nij that
would satisfy Equation [20] would be 0 (Pi1 = Nij = 0) at optimality'
(1:6).

In this constraint, Ti is the first order neighbors adjacent to pixel i. See Figure 13 for

a graphical depiction of first order neighbors. In this figure, the first order neighbors

for pixel number 10 are pixels 6, 9, 11, and 14. For pixel number 16, the first order

neighbors are 12 and 15.

1 2 3 4

5 7 8

Figure 13. First Order Neighbors For Pixel #10

The third constraint (Equation 21) is similar to the second constraint and

ensures that each pixel i is only assigned at most to one subregion. The fourth

constraint (Equation 22), sets the border length for the subregions to be found. In

this equation, the variable sij is the length of the border between pixels i and j (1:5).

For the application of this constraint to digital imagery, I will assume pixels lengths

and widths of one.2 Variables Pijk and Nijk are "mutually exclusive binary decision

'Note: In the explanation given for variables N and P, the general case of only finding one
subregion in the image is discussed. For this reason, the k subscript is not used since k = 1.
In Equation 20 the k subscript is used to find multiple subregions in the image. The general
explanation given for the one subregion also applies to the multiple subregion search.

21n general, this is not a bad assumption since most satellite remote sensing systems have
equal resolution in both length and width. However, the border length of the object must now be
measured in terms of pixel units.
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variables that sum to [one] if the border separating [pixels] i and j in the final

solution is an external border ... and [zero] otherwise" (1:5-6). In the Benabdullah

and Wright model, the range for feasible external border lengths for a specified M

value (subregion size) is given. This range consists of the even values between Bmin

and BM where (1:7-8):
BMx= = 4M (25)

B!ýn = 4(< rM>) + 2t. (26)

In Equation 26, t is defined as follows:

[0 ifM-(< .fM>)2 =0

t= 1 ifM <(< Vf-M>)2 +(< V->)+1 (27)

2 if M > (< V'M >)2 + (< vK-M >) + 1

and < VM > = the integer part of vA-M.

With this border length constraint, the B&W model "guarantees contiguity of

the resulting land area for values of L near BM,," (1:8). If the border length, L, is

set to Blý, a square region will result.

3. 1.1 Example Problems Before this model is run on an actual digital image,

it is necessary to run the model on some example problems. The results of these

problems will highlight the capabilities and limitations of the model. These example

problems are ones in which the analyst can visually determine the correct answer

before running the model. Validation that this model can solve the example problems

will give the model more creditability in solving the real spectral and spatial pattern

recognition problems. Several problems are created using the 3 x 3 pixel image

shown in Figure 14.

In this digital image, the pixels are numbered sequentially from one to nine,

starting in the upper left hand corner and finishing in the lower right hand corner.
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11 5 6

8 13 2

511

Figure 14. 3 x 3 Pixel Image With Associated Costs

The numbers shown represent the cost to acquire a pixel into a subregion'. There-

fore, the cost to acquire pixel number four is eight4 . These example problems were

run using the Linear, Interactive aNd Discrete Optimizer (LINDO)5 software on a

Zenith 248 personal computer.

One of the easiest problems to solve would be the location of two subregions,

both of one-pixel size. Remembering that the B&W model has a minimize objective,

the solution is easily identified as pixels eight and nine. When the problems were

run with border length constraints of four and four, and subregion size constraints

of one and one, an incorrect answer resulted. The B&W model selected pixels seven

and nine with a corresponding cost of six.

To further test the validity of this model, 45 other problems were run on this

same data set. The results from these problems were significant. Out of the 46

problems run, only 25 had the right objective function cost and out of these 25, only

'In the context of applying the B&W model to digital imagery analysis, the term cost is syn-
onymous with the pixel gray value.

4The actual numbers used in this 3 x 3 image are not representative of an actual image, but
are rather used for illustrative purposes. The numbers were arbitrarily chosen to create a necessary
data set

5LINDO is "an interactive linear, quadratic, and integer programming system" (31:1).
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ten had the correct pixels selected. Given an accuracy rate of only a little over 20

percent, further research was required.

Further investigation on the B&W model revealed some insight into the border

length constraint (Equation 22). For non-corner pixels, sii is the length of the side

of a pixel and for a corner pixel, sij is twice the length of a pixel side. I have set the

length of a pixel side to one but any value can be used without affecting the solution

(1:12). In addition to these border length accounting rules, one should note that

the pixel sides on the edge of the image have no value. Therefore, they (side of the

pixels which form the image edge) are not included in the border length accounting.

Additional research on this part of the B&W model has been conducted by Dr. Chan

at the Air Force Institute of Technology. He states that the border length, L, is twice

the perimeter length of the desired subregion (6:32).

With this new information, several more runs were made on the selection of two

subregions both of size one. The results of the runs as well as the constraint inputs

are shown in Table 2. The complete listing of the LINDO input and a summary of

the output for each completed problem is given in Appendix A.

Table 2. Results for Location of Two Unitary Subregions

Border Constraint Pixels Selected
RunL Length 11 Length 2 Region 1 Region 2 Cost

#1 4 4 7 9 6
#2 3 2 - -*

#3 4 3 - -*

#4 6 8 8 9 2
#5 4 6 9 8 2
#6 8 8 8 9 2

*No solution after 2,000+ iterations

3.1.2 Analysis of Results With the results of the six computer runs, the

intricacies of the model can be explained.
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"* Run #1 In run number one, border lengths of four and four were selected.

Given the additional information on how border lengths are calculated, the

feasible pixels can be determined. The feasible set is the corner pixels and

the middle pixel. With a minimize objective function, the optimal solution is

reduced to pixels seven and nine.

"* Run #2 In the second run, the lengths were changed to three and two. This

problem was run to test if pixel number nine actually had a border four as

opposed to two. Although no solution resulted, this run proved the border

length of pixel number nine was not two.

"* Run #3 In run three, the border length of three was kept but switched from re-

gion one to two. The first border length was set at four. With this combination,

one would expect pixels number nine and number eight to be selected. Pixel

number eight only has a border of three since only three pixels are adjacent to

it.6 The B&W model failed to produce a solution after 2,000 iterations.

"* Run #4 In run number four, the border lengths were doubled and switched

between the subregions. With this combination of border lengths, the model

finally selected the correct pixels. With this combination, both border lengths

are twice the actual perimeter.

"* Run #5 In run five, the border length of eight from run four was divided by

two. However, the border length of six was retained. With these constraints,

pixel number nine must be selected for a border length of four and pixel number

eight must be selected for a border length of six. These are the minimum border

lengths required for the model to correctly select pixels eight and nine.

"* Run #6 In the final run, both border lengths were set to eight. Pixels eight

and nine were again selected. One may question why two corner pixels were not

selected. It appears that if the border length is above the minimum required

6Remember, border length is computed on the basis of adjacent pixels.
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for a pixel, the objective function drives the solution. In other words, given a

choice between two cells where the border length constraint is either an integer

multiple of the pixel border or the border length constraint is greater than the

pixel border, the model will pick the lower cost pixel.

3.1.3 Analysis of Model Given the results from the example problems, two

limitations about the B&W model are evident. The first noticeable limitation is that

the accounting of the boundary lengths is not straight forward. Benabdullah and

Wright stated that the only accounting difference between pixels was between corner

and non-corner pixels. However, if this was true, the example problem with border

constraints of three and four should have been solvable. The minimum border length

constraints for the example problem was six and four. This observation supports the

statement by Dr. Chan that the border length, L, is twice the subregion perimeter.'

The second limitation is that the model will only find the lowest cost pixels for a

given area size. In processing digital imagery, this would correlate to the lowest gray

value total for a given subregion size. It is rare that the imagery analyst will only

want to find the darkest (lowest gray value) pixels in an image.

For the B&W model to become a digital processing tool, both the border length

accounting and the pixel selection must be improved. With the present formulation,

the analyst is required to know if a given pixel is on the image border or not. In

the real world, the analyst will not know where his target is located (in the image),

and he or she will expect the computer to find it. With reformulations to the basic

model, these inherent weaknesses can be overcome. Improvements to the basic B&W

model are examined in the next section.

'Note: The subregion perimeter does not include the external sides of the pixels on the image
edge. Therefore, a single pixel subregion will have a minimum border length of six (edge pixel) or
four (corner pixel).
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3.2 Examination and Modification of the Benabdullah & Wright Model

The B&W model as originally designed is driven by a minimization objective

function. This function is constrained by limits on border length and subregion

size, contiguity requirements, nonoverlapping requirements and by limiting pixel

assignment to only one subregion. As presently written, this model is of limited used

to an imagery analyst processing multispectral imagery.' To increase the utility of

this model, the constraints need to be examined and their relevance to digital imagery

explained. Once this is determined, modifications to the model can be made. As will

be seen, some of the constraints are of limited value and thus can be elimanted from

the problem. This removal has the dual benefit of simplifying the problem (reducing

the number of equations) and also increasing the fidelity of the model.

3.2.1 Examination of Constraints The B&W model is composed of two types

of equations: the objective function and the constraints. The objective function

drives the model but is limited by the constraints. It is important to understand

each type of equation, in the context of digital imagery analysis, and what its im-

plication is for the location of subregions within the imagery. In the B&W model,

the constraints fine tune the objective function. For this reason, the constraints

will be examined first and their significance explained. This will be followed by an

examination of the objective function.

3.2.1.1 Border Constraint One of the constraints in the B&W model

is a border constraint. In the description of the B&W model, this constraint was

defined as shown in Equation 28.'

n

E :Sii(Pijk + Nijk)=Lk Vk (28)
i=1 jET.

sRecall that this model was not originally designed to process digital imagery.
9For an explanation of each of these variables, refer back to Section 3.1.
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This constraint allows the analyst to fix the border length for a given object size.

At first, this would appear to be a very powerful constraint since the border length

is fixed for a given area configuration. For example, a subregion of four pixels

arranged in a square pattern would have a border length of 16.10 The combination

of a subregion of 4 pixels along with a border length of 16 will efficiently differentiate

between this region and a subregion of 3 pixels also with a border length of 16. This

combination of constraints will also differentiate between this square subregion of 4

pixels and any other subregion of four pixels not arranged in a square fashion. These

examples are shown graphically in Figure 15.

Border = 16 Border = 16 Border = 20

Area = 4 Area = 3 Area = 4

Figure 15. Border Constraint Examples

In the report on the B&W model, the writers only call out two methods to

account for the border length (1:12). In reality, three methods are actually used to

account for the border length of a pixel. If the pixel is a corner pixel, the length is

four. If the pixel is an edge pixel, the length is six. Finally, if the pixel is an interior

pixel, the length is eight. All of the above rules apply if the subregion size is one. If

1°Recall, that the border length for this model is defined as twice the actual pixel border length.
In this example, the actual pixel border length is 8, thus the subregion border length is defined as
16.
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the subregion is greater than one, the border length is defined as twice the interior

perimeter of the subregion. Since the analyst will not know a priori where the pixel

is located on the image, a standard method for accounting of the border length is

required.

In 1991 Captain Reed completed a Master's thesis entitled, Binary Program-

ming Models of Spatial Pattern Recognition: Applications in Remote Sensing Image

Analysis. In this thesis, he added a frame of pixels to the image data to help solve

a multiple subregion allocation problem (26:35). Although he did not use this tech-

nique to help resolve the border length accounting problem, this method will work.

With a frame of pixels around the image data, all the potential pixels of interest (all

the pixels in the image) will now have a border of eight. With this standard method

of accounting, the image analyst is not required to know where the target is located

in the image. See Figure 16.

Figure 16. 4 x 4 Image Data With Frame

In this figure each of the image pixels is surrounded by four first order neigh-

bors. To prevent the B&W model from selecting a frame pixel, the value of the pixel

is set high. With a minimize objective function, the model will then bypass these
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"high cost" frame pixels. In Figure 17, a frame has been added to the 3 x 3 pixel

image that was used in previous examples.

A total of seven runs were made to test whether the frame pixels provided a

standard accounting method for the border lengths. The results of these runs are

shown in Table 3 below. A partial listing of the General Algebraic Modeling System

(GAMS) output from these computer runs is included in Appendix B."

Pixel Grey Values Pixel Positions

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 17. 3 x 3 Image Data With Frame

These results show that the addition of the frame results in a standard method-

ology for the accounting of subregion border lengths. Each image pixel now has a

border length of eight.12 With the accounting of the border length standardized,

the image analyst no longer needs to know where the target is located in the image.

If the analyst knows the size and shape of the target, the analyst can now input

"All the computer programs from this point in the thesis on were run on a VAX mainframe
computer using GAMS. This switch from LINDO to GAMS was necessitated by the increased
complexity of the problems. "GAMS is designed to make the construction of and solution of
large complex mathematical programming models more straightforward for programmers and more
comprehensible to users of models from other disciplines" (2:xiii).

12Recall that the border length is defined as twice the actual border.
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Table 3. Results of Seven Runs With Frame

Model Input Constraints Output
Run Subregion 1 Subregion 2 Pixels Selected

No. Size Border Size Border Subregion 11 Subregion 2
1 1 8 1 8 18 19
2 1 8 3 16 14 17,18,19
3 2 12 5 24 12,17 8,9,14,18,19
4 3 16 3 16 8,9,14 17,18,19
5 1 8 4 20 8 14,17,18,19
6 1 8 5 24 8 9,14,17,18,19
7 1 8 6 20 17 8,9,13,14,18,19

these constraints into the model.'" With the minimize objective function, the model

will select the subregion with the lowest gray values that satisfy the user-defined

constraints. In the above runs, the minimum subregions are selected (that meet the

user-defined constraints) and this can be verified by inspection. Although the model

now has a standard methodology to account for the border lengths, the model is far

from operational. The model only selects the lowest gray values pixels due to the

minimize objective function. It would be rare that the analyst only wanted to find

the lowest cost pixels.

When the border length constraint is applied to digital imagery, it has limited

utility. The model's underlying assumption tied to this constraint is that the object

or subregion of interest is aligned with the grid lines. As long as the region is

aligned with the the grid lines, the border length remains fixed. However, if the

object is rotated, the border length will increase. For a rectangular subregion, this

increase in border length will reach a maximum at 45 degrees. For an example of

this phenomena, see Figure 18. In this figure, the grid represents a 10 x 25 digital

image with an individual pixel depicted by a single small square.

"aThe size and shape of the object must first be converted into pixel size and shape before this
data can be input into the model.
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Figure 18. Effect of Rotation on Border Length

In Figure 18 the rectangular subregion of 12 pixels has a border length of 32

when it is aligned with the grid lines. This same subregion is rotated 45 degrees in

the middle figure. Since the pixels are square in dimension, they can not replicate the

diagonal lines. Instead, a stair step effect occurs as shown in the third subregion. In

this subregion, the area and border has been approximated using the following rule.

If a pixel is 50 percent or more covered by the subregion area, then it is included

in the subregion area. The result of the rotation is that the area increased to 16

pixels and the border length increased to 40. It is important to note this change was

caused only by the rotation of the object and not by a change in the subregion itself.

One may see the obvious applicability to moving targets, but may not see how

this applies to stationary targets such as buildings. An object can appear to be

rotated if the pixel grid itself is rotated. This is certainly possible with the orbital

viewing capabilities of a satellite sensor. Usually the pixel grid (formed by the sensor

array) will not rotate and the building (or any other object) will not be aligned with

the grid. If the object of interest and the grid are not aligned, the object will usually

display this characteristic stair step border. 14

14The occurrence of the stair step border will depend on the size of the object relative to the
pixel size.
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When remote sensing is accomplished by satellites, the objects of interest will

rarely be aligned with the pixel grid. For this reason, the use of the border length

constraint is of little utility. If this constraint is used, a range of border lengths

would increase the utility of the model. However, even this extension is limited in

its application.

In the example used above, a pixel was assigned to the subregion if it was 50

percent or more covered by the subregion. This rule of thumb is generally accurate,

but it is not entirely true. A mixel is formed when a pixel spans the boundary

between two or more types of subregions. A mixel thus contains the weighted spectral

response from two or more different objects. For this reason, mixels are difficult to

classify based on their spectral response alone. The sensor does not differentiate

between these different areas, but rather records the combined spectral response

from this area. As one object begins to dominate the mixel, the spectral response

will begin to approach the characteristic spectral range of the dominating object. If

the border between an object and its surroundings is difficult to distinguish, then

the border length will also be difficult to specify for a given area. In Figure 18, one

can see eight mixels that are 50/50 in composition between the object of interest and

the surrounding area. Therefore, the border outlined on the rotated object may not

be entirely correct. Given this analysis, one begins to appreciate the lack of utility

for the border constraint. If the border constraint is used, one should use a range of

lengths for a given size target."5 The analyst should then systematically try each of

these values in the model until the object is found. If no answer results, the size of

the object may be incorrect or the object may not be in the image.

3.2.1.2 Area Constraint Another constraint in the B&W model is the

area constraint. With this constraint, the analyst is able to specify the a priori size

15Recall earlier in this chapter the discussion of the acceptable range of border lengths for a given

sized object.
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of the subregion to be found in the digital image. The mathematical formulation of

this constraint is given in Equation 29 below. 16

n

Zxik = Mk Vk (29)

At first, this constraint also appears to be a powerful one in helping the analyst

to find the area of interest. However, further examination of this constraint shows

that it is limited in its digital imagery application. It appears that this constraint

allows the analyst to bypass all those like-type subregions that are either smaller or

larger than the specified area size.' 7 In fact, this observation is only partially true.

If the area constraint is set at five pixels, no area in size under five pixels will be

found. On the other hand, this constraint does not restrict the model from finding

a portion of a like-type region of larger size. This fact is illustrated in Figure 19.

Figure 19. Area Constraint Examples

"6 For a explanation of each of these variables, refer back to Section 3.1.
17 13y like-type, I mean the same land cover type or same type of object. For example, if the

analyst is looking for lakes, not only will lakes be found, but also all bodies of water such as rivers,
oceans, swimming pools, etc. What can actually be found will depend on what water features are
in the image and the spatial and spectral resolution of the image.
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In Figure 19 all the subregions represent the same type of object. For the sake

of illustration, suppose they are all bodies of water. The lighter bodies of water

will all be passed over by the model since they do not meet the size constraint."8

If the analyst was looking for the L-shaped body of water, he or she would not be

able to find it based on size alone. Consider the large body of water in the middle.

This region illustrates how the 20-pixel-sized body of water could be broken into

four acceptable answers. The result of dividing the area as described is that there

are five possible solutions. The division of the 20-pixel-sized body of water shown

is not the only acceptable division. There are more ways to divide the region into

other subregions of 5-pixel size and thus, more possible solutions will result. Even

if the border length constraint is included, this will not allow the model to uniquely

identify the L-shaped subregion. The border length of the L-shaped subregion is 24,

but this is the same border length for two of the 5-pixel area subregions shown in

the larger body of water. Thus, the possible number of solutions has been reduced

to three. With this reduction in the number of possible solutions, one may be lulled

into reconsidering the border length constraint. However, one should recall how the

border length is not an effective constraint with satellite digital imagery.

The above example illustrates an important subtlety that the analyst needs

to consider when using the area constraint. The area constraint allows the analyst

to find subregions equal to or greater than the size constraint. In other words, a

subregion equal in area to the size constraint can be found, but this is not necessarily

the natural size of the subregion. For example, if the model selected a subregion of

five pixels out of the major body of water, this does not tell the analyst the true size

of the 20-pixel-sized body of water.

"I1n using the phrase "lighter bodies of water," I am not referring to the spectral response of the

water, but rather the shading of the graphical depiction.
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Given this examination of the area constraint, we see that it is not very

effective.19 This constraint will eliminate all subregions of size smaller than the

desired area but it will not eliminate subregions larger than the constraint. Analysis

of the area constraint shows that it must be used with some forethought.

3.2.1.3 Contiguity Constraint An important constraint in the B&W

model is the contiguity constraint. With this constraint, the analyst ensures that the

pixels selected to form one defined area are all connected together. Mathematically,

this constraint is enforced with two equations: 20

n

Zxik = Mk Vk (30)

n

E E s1j(P, jk + Njk) = Lk Vk (31)
i=1 jET,

With this constraint, the B&W model is prevented from randomly selecting

pixels in the image. Rather, the pixels selected must all be connected together and

also meet all of the other constraints. By the term connected, I mean first order

neighbor connected. While this is a valuable constraint, it also has its limitations.

Consider the following. For each interior pixel, there are a total of eight neighbors.2 1

Four of these neighbors are first order and thus, are possible candidates for selection

into the subregion. However, the second order pixels (diagonally connected pixels)

are not candidates for selection. The second order neighbors will not be incorporated

into the subregion unless one or more of the first order neighbors are first selected.

For an example of this, look at Figure 20.

' 9 This measure of less than 50 percent effectiveness is based on the following assumption: the
number of subregions larger and smaller than the area constraint are equal. The magnitude of this
assumption depends on what the analyst is looking for and what the image contains. Thus, the
magnitude of this assumption will vary from case to case.

2'For an explanation on each of these variables, refer back to Section 3.1.
21By the phrase interior pixel, I mean a pixel not located on the border of the image.
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2 1 2 1 2 3

1 X 1 4 X 6

212 7 89

Figure 20. Illustration of First and Second Order Neighbors

In this figure, the subregion of nine pixels on the left illustrates the concept

of first and second order neighbors. The first order neighbors are denoted by l's

and the second order neighbors are denoted by 2's. Whether a pixel is a first or

second order neighbor depends on its location with respect to the pixel currently

under consideration. The pixel under consideration is marked with an X in this

figure. The limitation of the model is illustrated in the second subregion of nine

pixels. Pixels 1, 3, 7, and 9 can not be added to the X pixel unless pixel 2, 4, 6, or

8 is first added to the middle pixel. For example, if pixel 6 is added to the middle

pixel, then pixels 2, 3, 4, 8, and 9 are candidates for incorporation into the subregion.

Notice that pixels 1 and 7 were excluded since they are still second order neighbors

even with the incorporation of pixel 6. If pixel 4 is added to the X pixel, then pixels

1 and 7 are candidates for incorporation. With this model, diagonal appendages

will not be considered for incorporation into a subregion if they are all second order

neighbors. For example, see Figure 21 below.

In this figure, the model can not select any of the diagonal appendages of

the subregions. The reason for this nonselection is that they are all second order

neighbors. An extreme example is the right subregion. The B&W model will not

even detect this subregion if the area constraint is set greater than one pixel. Notice
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Figure 21. Subregions with Diagonal Appendages

that all of the diagonals are of one pixel width. If the diagonal appendage is greater

than one pixel width, then all the diagonal pixels are candidates for incorporation

into the subregion. They are possible candidates because they have now become first

order neighbors. See Figure 22 for an illustration of this concept. All of the diagonal

appendages of the central subregion are possibilities for incorporation in this figure.

The significance of this limitation to the imagery analyst will depend on two

factors. The first factor is the spatial resolution of the sensor. As the spatial reso-

lution increases, the pixel size decreases. As the pixel size decreases, the number of

single width diagonal appendages will decrease. Thus, as the spatial resolution im-

proves, the ability of the B&W model to find diagonal type subregions and diagonal

appendages also improves. There is a direct correlation between the two. The sec-

ond factor to consider is what the analyst is looking for. For example, if the analyst

is attempting to locate river systems, this model would not be very effective. The

reason for this is twofold: 1) river systems have characteristic branching resulting

in thin lines and 2) they typically do not travel in straight lines. When the river is

relatively large in comparison to the pixel size this is not a problem. However, when
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Figure 22. Subregions with Diagonal Appendages of Width Greater Than One

the river branches approach the size of an individual pixel in width, this limitation

needs to be seriously considered. This limitation applies not only to river systems

but also to any other objects or subregions that display the same characteristics as

described above (e.g. a road at 45 degrees). If the analyst is not looking for objects

or subregions that branch or have diagonal appendages, then the limitation is of

little concern. One should recall that a straight region can appear diagonal when

not aligned with the pixel grid. For this reason, the analyst needs to be careful not

to arbitrarily disregard this limitation when using this constraint.

3.2.1.4 One Pixel - One Subregion Constraint Another constraint in

the B&W model is the one pixel, one subregion constraint. This constraint is math-

ematically defined as follows: 22

K

Sxik < 1 Vi (32)
k=1

22 For an explanation on each of these variables, refer back to Section 3.1.
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The model limits the sum of a particular pixel to one, so that it can only be

used for one subregion. With this constraint, there is no double accounting. In other

words, a pixel will not be assigned to two or more subregions at the same time. This

constraint is straight forward and requires no further explanation.

This constraint is directly applicable to the analysis of digital imagery. It

performs the same function as above when looking for subregions in digital imagery.

This is a necessary constraint that will be retained in my implementation of the

model.

3.2.1.5 Nonoverlapping Constraint A constraint related to the One Pixel

- One Subregion Constraint is the nonoverlapping constraint. This constraint is

mathematically defined as follows: 23

Xik - Xjk - Pijk + Nijk = 0 Vi,j E Ti, k (33)

This constraint prevents overlapping of pixels between subregions. It also

defines the binary variables Pijk and Nijk which are necessary to account for the

border length. Therefore, this constraint is needed for digital image processing if

more than one subregion is being located or if the border length constraint is used.

3.2.2 Examination of Objective Function The driving equation for the whole

B&W model is the minimize objective function. With this equation, pixels are

selected on the basis of least cost. In addition to least cost, the pixels selected must

also meet the constraints of border length and size. With this formulation, the model

is of little value to an imagery analyst. In the real world, the analyst does not always

attempt to locate the lowest cost pixels.24 Rather, the analyst may look for targets

that encompass the entire range of gray values. If the B&W model is run on the data

23For an explanation on each of these variables, refer back to Section 3.1.
24 For this report, the cost of the pixel is equivalent to the gray value of the pixel. In eight-bit

digital imagery, the range of gray values is from 0 to 255.
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shown in Figure 23, the expected result, for a subregion of size four or smaller, would

be the combination of pixels eight through eleven.2" The results of this computer

run are shown in Table 4. More detailed results are shown in Appendix C.

Figure 23. Stratified Digital Image

Table 4. Location of a Four Pixel Subregion With Min Objective

Input Constraints Output
Size Border Pixels Selected

4 20 8,9,10,11

If the objective function is changed to a "maximize" objective function and the

same problem is rerun, the expected result would be the combination of pixels 26

through 29.2 The results for the location of a four Pixel region is shown in Table 5.

More detailed results are shown in Appendix C.

Although the data used in these two problems are not representative of what

would normally occur in nature, the limitations of the present model are clearly

"25Recall that the basic B&W model is driven by an minimization objective function.

"I61f the objective function is changed to maximize, the frame surrounding the image pixels must

change. If the arbitrarily large pixel values are not changed, the model will attempt to incorporate
these nonexistent image pixels into a subregion. For this computer run, the frame pixels were
changed to a value of zero.
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Table 5. Location of a Four Pixel Subregion With Max Objective

Input Constraints Output
Size Border Pixels Selected

4 20 26,27,28,292_

shown. The model can be used to find subregions of the lowest gray values or the

highest gray values. A modification is needed to find subregions composed of pixels

at the gray value limits (0 and 255) and everywhere in between. One method that

would allow for this flexibility in the model would be to set ranges on the sum of the

gray values for a subregion. A similar concept was used by Benabdullah and Wright

in the dividing of areas according to populations (1:19). While this concept was

mentioned in the cited reference, it was not fully developed nor applied to digital

imagery.

The present model with either a maximize or minimize objective function is

of little value to the imagery analyst. With this implementation of the model, the

analyst would only be able to find the highest or lowest cost pixels. Unless the analyst

is only interested in finding the lightest or darkest areas, the objective function and

thus the whole model is of little utility. Modification to the objective function as

well as to the constraints must be made to transform the B&W model into one that

can be effectively used by an imagery analyst. These modifications will be explained

in the next section.

3.2.3 Modification of Constraints Given the above analysis, it is evident that

modifications to the B&W model are necessary. Without these changes, the imagery

analyst can not find the subregions of interest. Modifications to the constraints are

first explored followed by changes to the objective function. The overall goal of these

modifirations is to increase the utility of the model for the imagery analyst.
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3.2.3.1 Pixel Selection Constraint One of the first modifications needed

by the B&W model is a method which allows the selection of pixels with any gray

value. Currently, the model can only select the highest or lowest gray value subre-

gions. One method to improve the selection of pixels is to set an upper and lower

bound (in terms of gray value total for the subregion) on the subregion of interest.

A second method for improving the selection of pixels is to set limits on the accept-

able gray value for each pixel considered for incorporation into the subregion. Both

methods are explored in depth in the following sections.

Subregion Bounds If the image analyst has a priori knowledge

about what he or she is looking for, the spectral signature of the target will prob-

ably also be known. The spectral signature of a target is the reflected and emitted

radiation from the target. Each object has a characteristic response that can be

used to differentiate one object from another. It is this feature that creates different

gray values on the image after it has been developed. For this reason, homogeneous

regions tend to have pixels of similar gray value. Therefore, a corn field may have

pixel values centered around 140 and an oak forest may have pixel values centered

around 100.27

Using this knowledge, the B&W model could be modified to find a 100-pixel-

sized oak forest and 100-pixel-sized corn field. If the oak forest is designated as

Subregion Number One, an additional constraint can be added for the sum of this

region. Assuming a totally homogeneous oak forest, the sum of the 100 pixels would

be 10,000. Likewise, the sum of the 100 pixels for the corn field would be 14,000. If

these two constraints are added to the model, both areas should be found (provided

there is a 100 pixel subregion of both a corn field and a oak forest).

"27These gray values are not the actual values of a corn field and oak forest. These values are
used for illustrative purposes. The actual value would depend on the spectral band in which the
two targets were imaged, the imaging conditions, and condition of the targets.
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In reality, the gray value for a homogeneous region is not an exact value but

rather a small range of gray values. Using the corn field example, the range of gray

values may be from 135 to 145. Thus, a better constraint for the location of the

100-pixel-sized corn field would be to set a lower and upper bound for the subregion

of 13,500 and 14,500.28

Computer Runs & Analysis To test if this method works, several

computer runs of the model were made. With the data shown in Figure 23, both

the border length improvement and the sum of the subregion constraints were used.

The first run attempted to locate two subregions. One subregion consisted of three

pixels and the sum of the gray values was set to three. The second region consisted

of four pixels and the sum of the gray values was set to 16. The equations for this

problem are given below.29 Note Equations 42 and 43 are the new subregion total

constraints.

Minimize Z = Wk [ CiXik (34)
k---1 Li=l

subject to:

Subregion size constraints
36

Exi,=3 Vk-=1 (35)
i=1

36

Zxi 2 =4 Vk=2 (36)
i=1

28Once again, these are not the actual gray values for a corn field. These values are used for
illustrative purposes.

29 1n the first equation, the weight for each subregion, wk, is set to one. The significance of
setting the weight to one is that each subregion is equally weighted in the objective function. In
the border length constraint, the variable sij is also set to one. This is a reasonable initialization
since most pixels have equal lengths and widths. With this setting, however, the target will need
to be measured in pixel units rather than meters or feet. To illustrate this point, consider a 100m
x 200m target area. If the pixels measure 20m on a side, the size of the object will be 5 x 10 pixels
in dimension and the border length will be 60 (2 x a subregion border of 30).
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Contiguity constraints

Xik - Xjk - Pijk + Njk = 0 Vi, j E T,, k (37)

Each pixel only assigned to one subregion

2

Exik < 1 Vi (38)
k=1

Border length constraints

36

1E sij(Pijl + Niji)= 16 Vk = 1 (39)
i=1 jETi

36

Y:1Z sij(Pij2 + Nij2 ) = 20 Vk = 2 (40)
i=1 jET,

Setting x, P, and N to binary variables

Xik, Pijk, Nijk = O, 1 Vi,j E Ti, k. (41)

Grey value totals per subregion
n

Cixi- 3 (42)
i=1

n

CiXi2 16 (43)
i=1

In the second run two subregions will again be found, but the input will change.

In this run, the first subregion will consist of eight pixels with an upper gray value

sum of 32 and a lower bound of 24. The second region will consist of two cells and

have an upper bound of four and a lower bound of two. Instead of two addition

equations, as in the previous problem, four additional equations are needed. These

four equations are given below. The results of these two runs are shown in Figure 24.

Grey value bounds per subregion
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n

Scixil :5 32 (44)
i=l

n

Zcixil > 24 (45)
i=1

n

Ecixi2 < 4 (46)
i=1

n

Ec xi 2 > 2 (47)
i=1

Run# 1 Run #2

'- = Subregion 1 0 = Subregion 2

Figure 24. Results of Runs #1 and #2

With these new constraints, the analyst can dictate to the model what type

of pixels to consider for incorporation into a subregion. The tighter the upper and

lower bounds for a subregion, the more the model is restricted. To illustrate this

point, consider the two runs. In the first run, the sum of each subregion was set.

With this constraint, the pixel values are not allowed to vary. If there is a subregion

of four pixels that sum to 16 (with a border length of 20), the model will find it.

For the given data set, the model only has one option and that is to select the four
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pixels each with a value of four.3" As was mentioned earlier, homogeneous regions

usually vary somewhat in their spectral response. Therefore, while a specific required

total of a subregion will cause the model to be very exact in what subregion it will

find, it is not always operationally valid. In the second run, this variance in the

spectral response is incorporated into the model by allowing each subregion to have

an upper and lower bound. See Equations 44-47. With these constraints, the model

selected a subregion composed of the one-valued pixels and the other subregion was

composed of two, three, and four-valued pixels. Seeing this result, one could suggest

that the model is not restrictive enough. As was mentioned earlier, the model can

be made more restrictive by narrowing the upper and lower bounds. This premise

was validated by rerunning the second run and raising the lower bound to 26. With

this run, the subregion of one-valued pixels was still selected but the other subregion

was composed exclusively of three and four-valued pixels. This method of changing

the upper and lower bounds cannot be arbitrarily applied to digital imagery. The

reason for this is that the spectral response for a given land cover type is set. If

the spectral range is shortened, pixels of a given land cover type will be excluded

from consideration for incorporation into a subregion. For more details on all three

GAMS runs, see Appendix D.

Pixel Bounds A similar but better constraint to improve the pixel

selection is to set bounds on the individual pixels. With this method, undesired

pixel types are not allowed into a subregion. In other words if the analyst is looking

for water, he or she can set an upper and lower bound for each pixel equal to the

spectral range for water. Mathematically, this constraint is given as

3 0This line of thinking also applies to the other subregion specified in Run Number One -
subregion of size three, border length of 16, and pixel gray value sum of three.
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{ may be 1, if pixel gray value is between spectral boundsXik = (48)
0, otherwise.

where xik is a binary variable that indicates if a given pixel is considered for assign-

ment into subregion k. Another mathematical representation of this constraint is as

follows:

lsb < if ci < usb (49)

then, Xik can be selected

Isb > if ci > usb (50)

then, Xik = 0

where lsb is the lower spectral bound and usb is the upper spectral bound for a

particular land cover type.

With these equations, only pixels of the desired land cover type are considered

for incorporation into a subregion. For example if the analyst is looking for water,

only pixels that fall within the water spectral range are candidates for incorporation

into the water subregion.31 All the other land covers are set to zero and thus are

not considered for incorporation into the subregion. This method is superior to the

subregion bounds method because that method only ensures that the mean gray

value falls within the required range. The subregion bounds constraint does not

prevent an undesired pixel type from being included in the subregion as long as the

total sum for the subregion falls within the designated bounds. Another advantage

of the pixel bounds method is that non-candidate pixels are assigned a value of

zero. This means that these pixels will not be considered for incorporation into a

"Note: Just because a pixel is a candidate for incorporation does not mean it will be selected

by the model. The candidate pixel has to meet all the other constraints and also maximize or
minimize the objective function.
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subregion. This constraint should assist the model when it performs the branch

and bound to find a noninferior solution. The model is assisted by eliminating the

majority of the pixels for pixel selection. Only the pixels with a gray value in the

specified spectral range will be considered for selection.

With the pixel bounds constraint, the model is now becoming a tool the im-

agery analyst can use to find specific types of land cover. Each subregion to be

found will have a separate constraint specifying the type of pixels to be considered

for incorporation into the different subregions. Based on the analysis of the two pixel

selection methods, I will incorporate the pixels bounds method into my formulation

of the model.

3.2.4 Modification of Objective Function The original objective function of

the B&W model is a minimization one. In Section 3.2.2, it was shown that the model

can also be run with a maximize objective function. The implications of combining

the minimization or maximization objective function with the other modifications

can now be discussed. One new formulation of the model is to combine the objective

function with the pixel bounds, contiguity, and one-pixel-one-subregion constraints

and delete the border length and area constraint. With this new model, subregions

of desired land cover type could be found, but this would not tell the whole story.

With a maximization function, the largest contiguous subregion of desired land cover

type will be found. The reason why the largest subregion is found is that the size

constraint is deleted. Recall that using a size constraint is of limited use because

it can only find areas of an exact size. Even though this formulation will give a

correct answer, the answer will be biased.32 The answer is biased in the sense that

the lighter (higher gray value) pixels are preferred over the darker (lower gray value)

pixels. A good assumption for the gray values of a particular land cover type is that

they are Gaussian (or normally) distributed (3). If this is a given, then the model

12 By the phrase correct answer, I mean a result where all the selected pixels are contiguous and
each subregion is composed of correct pixel type.
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is not picking those pixels that best represent the desired land cover type. Rather,

the model is biased to select those pixels that lie on the fringes of the designated

spectral range.

If the objective function is changed to a minimization one, the model will

operate differently. The most noticeable difference is that the model will select

no pixels if the same constraints are used as described above. Without an area

constraint, the minimize objective function will minimize the Z value by selecting

no pixels.33 Therefore, a size constraint is needed to run this model with a minimize

objective function. With this additional constraint, a correct answer can be found

but the answer will again be biased. This time, the model is biased to pick the darker

(lower valued) pixels over the lighter (higher valued) pixels. While the answer is

correct, it is not the best representation of the particular land cover type. A method

to correct for both the upper and lower biases is needed to improve the pixel selection

process. One method for accomplishing this correction is discussed below.

If a Gaussian distribution for the gray values of a particular land type is as-

sumed, a method to optimize the selection of pixels with the gray value mean is

needed. In other words, a method to bias the selection of pixels that are most rep-

resentative of the particular land cover type is needed. If a penalty is imposed for

deviations from the mean gray value then this would correct for the upper and lower

bound selection biases. A method to accomplish this goal is defined mathematically

in Equation 51
K n 1

Z = Max I(_k-cixik)I + 1 (51)
k=1 i=1 17 ii~

where k indicates the number of subregions to be found, Xk is the mean gray value

for subregion k, ci is the gray value for pixel number i, and Xik is a binary variable

that indicates if a given pixel, i, is assigned to subregion k. 34 The one is added (to

331n operations research programming, the result of the objective function is typically designated
by Z.

34 Note another objective function which increases the penalty for deviations from zero is Z -
Max Y-= , I=! 1 With this objective function, the penalty is increased geometrically
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the absolute value of the differences) in the denominator to prevent division by zero.

This equation along with two others will be discussed next.

One may question why the equation is not Z = Max k=SI = , !(y&. - cixik)l.

If this equation is the objective function, then the model will attempt to maximize

the difference between the gray value of the pixels selected and the mean gray value.

Therefore, the model would again be biased to select pixels at both extremes of the

subregion spectral range. A correct answer will result with this objective function

but the model is biased not to select the best representative pixels.

If the objective function described in the above paragraph is changed to a

minimization one, the model will select no pixels. The Z value would indeed be

minimized since the value would be zero. However, a correct answer can be obtained

if the area constraint is added. With this formulation, the model will attempt to

select pixels closest to the mean gray value for the desired subregion. This result

supports the goal stated above but the selected subregion may or may not be the

natural size of the subregion.

The objective function in Equation 51 also supports the goal of implementing a

selection bias that favors pixels close to the mean gray value. Pixels at the upper and

lower bounds contribute significantly less to the objective function than those that

are close to the mean. The relative contribution of various pixels to the objective

function is shown in Table 6.

Looking at the values in Table 6 shows that the model is biased to select the

pixels that are closest to the mean gray value for a given land cover type. The model

will select the area most representative of the specified type if an area constraint is

used in conjunction with this objective function.

In summary, all of the three modified objective functions described have vary-

ing degrees of utility. The model is biased to select pixels at the extremes of the

as a pixel gray value varies from the mean. I did not use this objective function since the scope of
this thesis is confined to linear program techniques.
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Table 6. Relative Contribution of Pixels to Objective Function

Pixel Absolute Contribution to
Difference Value Objective

(Yk - cixik) I(Yk - cixik)I Function

0 0 1
± 1 1 1/2
± 2 2 1/3
±-3 3 1/4
± 4 4 1/5
4- 5 5 1/6

designated spectral range with the first objective function, Z= Max Ek=1K 2i=l I(k-

CiXik) 1. In general if an area constraint is used with this objective function, the model

will find the area least representative of the designated land cover type. With the

second objective function, Z = Min k=1 Ei= I(Yk - cixik)I, the model is biased to

select pixels close to the mean gray value for a specified land cover type. No pixels

will be found with this objective function unless an area constraint is added. An area

most representative of the specified land cover type will result with this addition.

The model is again biased to select pixels close to the mean gray value for a specified

land cover type with the third objective function, Z = Max -kKl -E7 1
l= I (k-c,x,kI+Y"

An area most representative of the specified land cover type will be found if an area

constraint is used with this objective function. Of these three objective functions,

the second and third have the most utility when applied to digital imagery.

3.3 Combining of Single Channel Images

Once a single channel has been processed (spectral and spatial patterns iden-

tified), a methodology is needed to combine the single channels into a composite

image. By combining the images, a better segmentation of the object of interest

should result. The reason for this increase in accuracy is that more information has
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been used to identify (or recognize) the object of interest. It would not be uncom-

mon for the model to select a different subregion size and border length because of

the different spectral response of the object of interest in each imaging band. One

method that can be use to combine processed single channel images is multicriteria

optimization. The concept of multicriteria optimization will first be explained and

then its application to digital image processing will follow.

3.3.1 Multicriteria Optimization Description When a single channel image

has been processed, it is necessary to combine it with the other single channels

images. Each channel is processed against a different objective. Therefore, the

answer in one image may not be the same as in another image, although the images

are of the same geographic area. If the images were simultaneously processed with all

the different objectives included, it is possible to calculate a composite result. This

method also requires that the constraints for each image also be the same. In short,

the focus of multicriteria optimization is to eliminate the inferior solutions rather

than determine a single best solution. The result of this process is a small subset

of feasible solutions that require further analysis. This subset is formally known

as the set of noninferior solutions35 (10:174). This subset is sometimes called the

N-set (4). One method of multicriteria optimization is by multiple objective linear

programming (MOLP).

The general formulation for a multiple objective linear program is as follows

(33:138):

max (Cx = zi)

35The term noninferior solutions is sometimes referred to as dominate solutions, Pareto optimal
solutions, nondominated solutions, admissible solutions, or the nroduction feasibility frontier. Al-
though the term noninferior solutions is not elegant, it is preferred since it is both descriptive and
accurate. The term dominate solutions is misleading since no solution in the noninferior dominates
over any other in the set (5:4-5), (10:175).

72



max (c2x = z 2) (52)

max (ckx = zk)

subject to x E S

or

"max"(Cx = zix E S) (53)

where

k is the number of objectives,

c' is the gradient; objective function coefficients of the ith objective,

zi is the criterion value; objective function z-value of the ith objective,

S is the feasible region,

"max" indicates maximization of all objective simultaneously,

C is the k x n criterion matrix; matrix of objective function coefficients whose

rows are the gradients of the gradients c' of the k objective functions, and

z is the criterion vector, objective function vector, z-vector.

Multiple objective problems rarely have a single point which maximizes all

objectives simultaneously. For this reason, we want to maximize each objective to

the "greatest extent possible" (33:138-139). To better understand the process of

multicriteria optimization, it is necessary to introduce the concept of X, Y, and Z

space. X is commonly referred to as the decision space. Y is called the criterion or

outcome space and Z is the preference structure (5:1).

3.3.1.1 Multicriteria Optimization Example One of the best ways to

explain the X, Y, and Z spaces is by way of an example. These spaces are used
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to arrive at a multicriteria optimization solution. Given the multicriteria problem

below, the utilization of the three spaces can be shown (4).

Max fl(X1,X 2 ) = 4xl - X 2  (54)

Max f 2(xI,x 2) = -2x, +5x 2

subject to 2x, + 3x 2 < 12

X2 < 3

3x,-x 2 > 0

X1 ,x 2 >- 0

A proven method for solving this MOLP is to subordinate one of the objectives

(or criterion functions) into the constraints (5:6). An equivalent representation of

Problem 54 is given below (4).

Max fi(x1,x 2) = 4xi -x 2  (55)

subject to x E X

f 2(x1 ,x 2) = -2x, + 5x 21eqr 2

where r 2 is the satisficing level for f2. "By minimizing and maximizing f2 over X,

the feasible region defined by the original constraint set, we find" that f2 is bounded

as follows (5:6):

- 12 < f2(x) •< 13 (56)

If the constraints are plotted along with f, and f2, the resultant graph will display the

noninferior solutions. This graph is shown in Figure 25 below. The five constraints
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form a region of points that may be feasible. This region is further restricted by

the bounding of f2 between r 2 max and min. When f, is also plotted, the N-set (or

efficient frontier) can be found. These noninferior solutions are depicted by the line

segment A-B-C-D-E. The graphing of the decision variables, x, and X2 , was done in

the X space. The next step in solving the MOLP is to transform the noninferior

solution into the Y or criterion space.

f2 !5 r2 (max)

4" fl

Fiue2.'af2 Dr2 (oain S

B A

1 2 3 .. .... ...** . 5 /6 7 8 x I

Figure 25. Graphical Display of Constraints and Objectives in X Space

If the noninferior points are substituted into the two objectives, these points

can be remapped into the Y space. Using the points A-E, the remapped points,

A'-E', are displayed in Table 7 below. Plotting these new points graphically displays

the remapping into Y space. This graph is shown in Figure 26 below.

The goal of multiobjective optimization is to optimize all objectives at the same

time. While the Y space graphically depicts the points that optimize the objectives,

it does not show the relative weights of each objective. In other words, if the objec-

tives are combined into one objective function, what is the relative contribution of
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Table 7. Mapping of Points From X Space to Y Space

X Space Y Space

Point (XI,X 2) Point (fi,f2 )
A (6,0) A' (24,-12)
B (4.5,1) B' (17,-5)
C (3,2) C' (10,3)
D (1.5,3) D' (3,12)
E (1,3) E' (1,13)

El

12 D'

8:
Y2 y Yi

%C Yl

0 7I I I I

-4 4 "8., 12 t6 20 24

-8
-8 - B'",,,.

-12 At A

Figure 26. Graphical Display of Constraints and Objectives in Y Space
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each objective at each noninferior point? One method for determining these relative

weights is called the weighted-sums approach.

The weighted sums approach has appeal since a MOLP can be converted into a

single criterion LP, which can be solved with most commonly available LP software.

The general formulation of the weighted sums approach is as follows (33:166):

max {1TCxIx E S} (57)

In this equation, X is the weighting vector which is normalized so that all its

elements sum to one. The set of all weight vectors is denoted by A and is defined in

Equation 58 below. C is the k x n criterion matrix whose rows are the ci's, and S is

feasible region. This method attempts to optimize the composite objective function

for a given A. Thus, this method only "experiments with convex combinations of

the objectives" (33:165).

( k
A= AERkIAt > 0, •J Ai = . (58)

i=1

Given the multiobjective problem that was converted from X space to Y space, one

may ask,"What combination of (A1, A2) would make the A', B',.. ., or E' a maximum

point of Alf 1 + A2f 2 over Y?" Considering only point D', it can be shown at which

lambdas this point remains optimal and at what lambda combinations the optimal

solution will shift from this point. For the following equation, changes in the A

weights can shift the maximum from D' to E'.

(A, A2 ) [ - 1< 0 (59)
Y2 - 12

For a shift from D' to E' to occur, the A weights must satisfy the following equation:

(Y2 - 12)/(y, - 3) < -A1 /A2  (60)
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where y is the set of points in the feasible region Y (5:7), (4). By varying the A

weights, the shift of the optimal point D' can be shown. Consider the examples of

A(D) and A(E) shown in Table 8 below.

Table 8. A(D) and A(E) Mapping in Y-Space. Adapted from (5:7).

Lambda Optimal Y Space
Weights Point(s) Mapping

A, A2  * ' I f 2

0.5 0.5 D' 3 12
.333 0.667 E'-D' 1-3 12-13

0 1.0 E' 1 13

Another way to think of this concept is to consider the multiple objective

function, z = Alf, + A2f 2, which is rotated around point D'. Table 8 records the

break point at which D' is no longer optimal as the lambda weights change (5:7).

The results of this break point are shown in Figure 27, which is graphed in the

Z-space.

3.3.2 Application of Multicriteria Optimization In the B&W model, the ob-

jective function attempts to maximize the total gray value subject to the given

constraints. The objective function for one channel is given as follows:

Maximize Z = E wk [: CiXik] (61)
k=l ~

In this equation, ci corresponds to the gray value of the pixel at location xi. The

variable Wk can be assigned a value of one if the number of subregions to be found in

the image is one or if the relative importance (weight) of finding one subregion over

another is equal (for two or more subregions). In the following objective equations,

I will assign a value of one to wk. This equation as presently written does not allow

78



1 A(E)/

" / (.333, .667)

X2 Z
/ 

x l% (D

1

Figure 27. Mapping of D' Breakpoint in Z-Space

for the simultaneous processing of two or more images. For the processing of two

channels, the MOLP can be written similarly to the example described above.

Max fl(x,k) = [
k=1l=

Max f2(xik) = E [ Ci2xik (62)

subject to constraints

Using the multicriteria optimization techniques described in the previous sec-

tion, a new objective function can be formulated. The goal of processing two or

more images is to maximize the combined gray value total from each channel, sub-

ject to the constraints. Applying the weighted sums methodology, the new objective

function can be written as:
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Maximize Z = w[Zw(ciixik + Ci2Xik +... + cigxik) (63)
k= i

or
K n

Maximize Z = E wg [ Ec t igXik) (64)
k=1 i=I g=l I

In these equations, cig represents the gray value of the Xik pixel in the gth channel.

Therefore, if three channels are available for processing, then there will be three

objective functions in the combined objective function. The variable w9 is the place-

holder for the lambda weights of the individual channels. Notice that the variables

in each objective function are the same, as required in multicriteria optimization.

Only the coefficients change as the channel changes. This method of multicriteria

optimization could not be used if the variables were different. If they were, we could

only optimize over the common variables. It is the coefficients that change as the

channel changes. The goal of this combined objective function is to maximize the

gray value total of the pixels selected in the g channels for a given set of lambda

weights.

In the image processing objective function above (Equation 64), the weight

for each channel varies from 0 to 1. In other words, if two channels are being

processed, the relative importance of selecting a pixel in one channel over another

pixel in another channel can be changed. Consider the following example. For a user

specified object, the spectral range is set in each channel via the constraints. If the

analyst is looking for a forest, the spectral range may be 50 - 75 in channel 1 and 100

- 200 in channel 2. Given this information, the analyst is able to determine an upper

and lower gray value total for an object of specified size. In Figure 28, the gray value

bounds are shown for each channel (with lambda weights both set to one). However,

the combined objective function maximizes both channels at the same time, so the

feasible range would be the addition of the two ranges. The addition of the two

channels is shown in Figure 29 (with the lambda weights both set to one).
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Figure 28. Graphical Display of Gray Value Total Bounds By Channel
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Figure 29. Graphical Display of Combined Gray Value Total Bounds
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In Figures 28 and 29, the efficient frontier is not shown since individual lambda

weights have not been applied to the objective function. If the lambda weights are

applied for a subregion of a given size, the efficient frontier can be plotted. Consider

the two-channel 2 x 2 image in Figure 30. In this figure, the location of the pixels

as well as the gray values for the two channels are given. In Table 9, the lambda

weights from 0 to 1 are applied to the two channels, for a subregion of two pixels.

In Figure 31, the efficient frontier for this subregion is plotted. Although not shown,

the plotting of the efficient frontier begins at the origin (0,0), goes to a maximum

on the Channel 1 axis (0,135), next to the maximum on the Channel 2 axis (350,0),

and finally, back to the origin. This characteristic start and finish of the efficient

frontier is shown more clearly in the previous example (Figure 26).

1 2 0075 190 100

3 4 5 55 160 140

Pixel Location Channel I Channel 2

Figure 30. Two-Channel Image with Gray Values and Locations

In Figure 31 the Y-space for two channels being processed with a maximize

objective function lies between the two axes and the dotted line. The closer the

Z value approaches to the dotted line (efficient frontier), the closer the objective

function comes in reaching a noninferior solution (for a given set of lambda weights).

The application of the lambda weights in digital image processing has an effect that

is not shown in Figure 31. With lambda weights of (1,0), only Channel 1 is processed.

With lambda weights of (0,1), only Channel 2 is processed. With any other lambda

weights, both channels are processed with relative weights. The implication of this is

that the subregion found with one set of lambda weights may not be the same as the
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Table 9. Mapping of Efficient Frontier in Y-Space

Optimal Lambda Y Space Selected
Points Weights Mapping Pixel

_ * A1 I A2 fi I f2 Locations
A' 1.0 0 135.0 0 1,2
B' 0.9 0.1 121.5 29.0 1,2
C' 0.8 0.2 92.0 66.0 1,4
D' 0.7 0.3 77.0 105.0 1,3
E' 0.6 0.4 66.0 140.0 1,3
F' 0.5 0.5 55.0 165.0 1,3
G' 0.4 0.6 44.0 210.0 1,3
H' 0.3 0.7 33.0 245.0 1,3
I' 0.2 0.8 22.0 280.0 1,3
J' 0.1 0.9 11.0 315.0 1,3
K' 0 1.0 0 350.0 1,3

Discrete

150- A' Efficient Frontier

4t B'
125 -

100-

75- E'
"o. F'

50--..G
"5�0. H'

"O.- I'
25 "'.. j,

"O. K'
0- i "

0 50 100 150 200 250 300 350
f2

Figure 31. Efficient Frontier For Two Pixel Sized Subregion
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subregion found with another set of lambda weights. This result was shown is the

I above example. For digital image processing, one can not assume that the optimal

point lies on the efficient frontier. The reason for this is that the subregion will rarely

be composed of only the upper-spectral-bound pixels.3' While the efficient frontier

is defined by the dotted line in Figure 31, it is not the best representation of the

forest type pixels.

Recall in the example for this figure that the spectral range was 50 - 75 for

Channel 1 and 100 - 200 for Channel 2. In most cases, the most representative

spectral value would not be the upper bound, but rather the Gaussian spectral

mean value. Suppose the mean spectral values for this example were 60 and 140,

respectively. If this was true, the efficient frontier would have to be redrawn. The

new efficient frontier would move inside the feasible region. Once again the reason for

this change is that the new efficient frontier line now reflects the combined spectral

values that are most representative of the forest-type vegetation. This new line

is much more applicable and reasonable for digital imagery processing than to the

original efficient frontier line in Figure 31. Therefore, any regions found on this line

are noninferior solutions for a defined subregion size.

For a given size target, an efficient frontier line can be calculated using the

method described above. If multiple solutions result from changes in the lambda

weights, the best or optimal solution will be the one located closest to the efficient

frontier line. 37

3.4 Conclusion

In this chapter, the B&W model was explained and several runs were made.

Analysis of the model and results revealed two shortcomings: lack of consistency in

361n this example, a subregion on the efficient frontier line would only be composed of pixels with
a gray value of 75 for Channel 1 and a gray value of 200 for Channel 2.

37How close a solution is located to the efficient frontier line is measure in terms of perpendicular
distance.
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border length accounting and lack of control over what pixels are selected. The model

was then examined from the perspective on an imagery analyst. Additional short

comings were identified and modifications were suggested to correct these problems.

In the last section, a method for combining the processing of more than one channel

was explained - multicriteria optimization. In this chapter, the groundwork was

laid for the real computer runs to be made in Chapter 4.

85



IV. Spectral and Spatial Pattern Recognition in SPOT Imagery

This chapter will investigate analysis of SPOT digital imagery on a channel by

channel basis and on a composite basis using the methods discussed in Chapters 2

and 3. The findings should indicate whether one method is better than the other for

exploitation of multispectral imagery. If a suitable technique can be found for the

composite method, this may be the preferred approach. This hypothesis is based on

the premise that fewer calculations (composite method) are usually preferred over

more calculations (individual method on each channel).

In this chapter, the SPOT imagery data set will first be described. This will in-

clude a brief description of the SPOT satellite system and also a physical description

of the image data that will be analyzed. Following this description, the assumptions

used in analyzing the data set will be identified and their significance explained. The

data set will then be analyzed visually to report what appears in that portion of the

image under analysis. The three channels will then be spectrally examined. My

analysis will next compare and contrast the findings in each channel. Following this

portion of the analysis, methods for combining the data will be explored. Concepts

such as vegetation index and band ratios will be used. The individual channel spec-

tral analysis and the combined spectral data will be used as an input to the modified

B&W model. With the spectral analysis knowledge, I will attempt to find spatial

patterns in the image based on the users inputs. This combined spectral and spatial

pattern recognition will be performed on the single channels as well as the combined

channels. The results from both of these image processing methods will be then be

compared to determine the most efficient manner to process multispectral imagery.
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4.1 Description of Imagery Data

For this thesis, a SPOT image of the Washington D.C. area was used as the

source of multispectral data.' The coverage of the image is approximately 50 km

by 50 km and centers around the city of Washington D.C. Thc actual image is

composed of four SPOT images acquired on March 19 and 24, 19872 (19). Rather

than attempting to analyze the whole image, the scope of this thesis will be limited

to a 48 x 18 pixel subimage.3 The area selected is a portion of the Washington

D.C. mall located between the Lincoln Memorial and the Washington Monument.

The actual area used in this thesis is outlined in Figure 32. The subimage can be

viewed on a personal computer using the Training System - Image Processor (TS-IP)

software developed by Dr. Thomas S. Kelso at the Air Force Institute of Technology.4

All three multispectral channels of this subimage will be used in the analysis

contained in this chapter. The imaging bands for the SPOT system are listed in

Table 10 below. In addition to the bands, the resolutions are also given. In Table 11

additional characteristics of the SPOT system are given.

In each channel, the individual pixels are allowed to take on one of 256 shades

of gray. The number of gray levels is due to the 8-bit nature of the pixels.5 The

values of the pixels will range from zero (black) to 255 (white). The actual numerical

value of each pixel by channel is shown in Appendix E.6

'Although the SPOT system is also capable of imaging in the panchromatic mode, this type of
data was not used in this thesis.

2 According to Glenn Kelly of the EROS Data Center (organization responsible for merging
the four images), three of the four images were taken in the multispectral mode and one in the
panchromatic mode (18).

3The actual dimensions of this subimage are 480 m x 180 m.
4The complete Washington D.C. area image is contained on a 60 megabyte CD-ROM which was

prepared by the EROS Data Center.
5The number of gray levels in eight-bit data is calculated as follows: 2' = 256.
6 Note each channel subimage is surrounded with a border of 999s. These values are not part of

the subimage. The first line of the Channel 1 image begins on the second line with the numerical
sequence: 224 222 214 .... This border assists the model program in locating specific spectral and
spatial patterns. The number 999 was chosen since it was visually distinct and because it was not
in the eight-bit spectral range. Since it is not in the spectral range, it will not be selected as part
of the image.
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Figure 32. Portion of Washington D.C. Mall Under Analysis (37).

Table 10. SPOT Imaging Bands (34:26)

Mode Wavelength (pum) Resolution* (in)

Panchromatic 0.51 - 0.73 10
Multispectral
Channel 1 0.50 - 0.59 20
Channel 2 0.61 - 0.68 20
Channel 3 0.79 - 0.89 20
* For nominal altitude of 832 km.
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Table 11. SPOT Satellite Characteristics (8:495-500), (21:585), (23:65)

Orbit:
Shape Circular
Altitude 832 km
Inclination 98.70 (Sun-Synchronous)
Descending Node 10:30 A.M. LST*
Orbital (Repeat) Cycle 26 Days

High-Resolution- Visible (HRV) Sensor:
Number of Sensors 2/SPOT Satellite
Off-Nadir Viewing ±270 (±475 km from nadir)
Ground Swath Width 60 km/HRV
(at nadir) 117 km/SPOT Satellite**

80 km/HRV at +270
Angular Field of View 4.130

Radiometric Resolution:
Multispectral 8 bits (256 gray levels)
Panchromatic 6 bits (64 gray levels)
* Local Solar Time ** 3 km overlap

4.2 Analysis of Data

In this section, the visible and spectral characteristics of the SPOT image data

will be discussed. Before proceeding into the analysis, it is necessary to first state

the assumptions used in this thesis.

4.2.1 Data Assumptions Several assumptions were made in the analysis of

the SPOT data. Each assumption and its significance is called out below.

9 Rectification Assumption: I assumed that no rectification was needed among

each of the multispectral images. In layman's terms, this means that a pixel

located at position (20,45) in Channel 1 is the same pixel located at (20,45) in

Channels 2 and 3. By the phrase "same pixel," I mean that each pixel (with the

same location, row and column position) contains the same area when projected

onto the imaging plane. This assumption, simplifies the task of analyzing the
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data, is not a bad one. That is because even though each channel was imaged

at a different satellite position, the imaging cells of each channel are practically

in the same location when compared to the distance from the SPOT satellite

to the Earth. For this reason, the amount of geometric correction needed, due

to the different location of the imaging cells, is negligible. This assumption

will aid in comparing like pixels in each image based on location alone. This

concept of rectification is shown in Figure 33.

, / O: CanlV

Figure 33. Multi-Channel Rectification Example. Adapted from (24:188).

* Uniformity of Pixel Size: A second assumption used in this chapter is that the

pixels remain uniform in size (10 meters x 10 meters) throughout the entire

image.' This assumption is greater in significance than the first assumption.

The actual pixel size will vary more from the 10 x 10 meter size the further

'SPOT multispectral imagery has a 20m resolution. This statement is in direct conflict with
the assumption made that the SPOT multispectral imagery is 10m in resolution. This increase in
resolution was made possible by geometrically rectifying and spatially resampling the multispectral
data to 10 meter resolution to match the panchromatic data (18). More information on this
resampling process is contained in the Minimal Image Processing Effects paragraph in Section 4.2.1.
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the pixel is located from the ground track of the SPOT satellite. The further

the pixels are located from the ground track, the larger the area each pixel will

cover. This increase in coverage (per pixel) is due to the viewing geometries

of off-nadir imaging. In this thesis, the actual size of the pixels will not vary

much (over the subimage) due to the small size of the data set tinder analysis.

I will assume that each pixel, no matter where it is located in the image, will

be 10 x 10 meters in size. This will be of great help when attempting to define

the size of a target area or when searching for a spectral pattern of a particular

size.

e Minimal Atmospheric Effects: This assumes the effects of the atmosphere on

the true gray value of each pixel are negligible. If this assumption was not

used, the effects of the atmosphere would have to be taken into account. The

atmospheric effects that can change the values recorded from the actual gray

values include: clouds, weather, and illumination conditions. Without the

actual weather data for the dates the image was taken, the magnitude of this

assumption is not known.

v Minimal Image Processing Effects: This assumption is similar to the atmo-

spheric effects one. I have assumed that the processing effects on the image

are minimal. This assumption is made because the scope of this thesis does not

include the image processing techniques used by the EROS Data Center. In

reality, the SPOT image was been processed quite a bit. This processing will

affect the analysis process described in this chapter, but the magnitude of the

effect is unknown. The analysis approach described in this chapter is general

enough in nature that it could be applied to raw image data (no image pro-

cessing). A detailed description of how the raw image data was manipulated

is given below.

According to Dr. Kelso, the combined image of the Washington D.C. area was

created by merging the red, green, and blue multispectral data with the panchro-
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matic data from the four images taken on 19 and 24 March 1987. This merge was

completed by the EROS Data Center in Sioux Falls, South Dakota. The following is

a description of the processing completed by the EROS Data Center on the SPOT

imagery.

The merge of panchromatic and multispectral data was completed
prior to mosaicking. To accomplish the merge, an image-to-image reg-
istration was first performed between each scene set. Approximately 60
control points were selected for each set using an autocorrelation tech-
nique. The multispectral data were geometrically rectified and spatially
resampled to 10-meter oixel ground resolution during this procedure to
match the panchromatic data using a second-order polynomial and cu-
bic convolution resampler. Once the panchromatic and multispectral
data sets were geometrically ide',tical, the merge was performed using a
hue-intensity-saturation (HIS) method. The data merge was effected by
transforming a contrast-enhanced spectral image into HIS color space.
The panchromatic data were stretched to match the distribution his-
togram of the spectral intensity channel, then substituted for the inten-
sity channel to create a hybrid HIS data set. The hybrid HIS data was
then transformed back into the red, green, and blue components. The
four merged scenes were mosaicked together, each scene was registered
to 1:24,000 scale maps by selecting approximately 10 control points per
image. These control points were combined with tie points selected by
Large Area Mosaicking Software (LAMS) along adjacent scene bound-
aries and a transformation grid was created. The grid was used to ge-
ometrically correct each image in relation to the Universal Transverse
Mercator (UTM) projection and to each other. Once each scene was in
proper geometric configuration, the radiometric matching between scenes
was accomplished using LAMS. Final processing of the data included a
3 X 3 edge enhancement and multipoint linear stretch to increase con-
trast. The digital data were then output on a recorder in the form of
a color transparency. The transparency was scanned on a graphic arts
scanner and the digital color separates were generated. These separates
are presented sequentially in the ',le EDC.SPOT.IMG on this disc. The
number of lines and samples for this file are 15,045 and 5,650 respectively;
this is an 8 bit image file. An IMDISP label file has been provided in
this subdirectory for your convenience (WASHDC). The top left-hand
lines/samples coordinates for display of the respective color-band images
are:
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red 160 48

green 5157 48

blue 10190 48

The color separates were used to produce a color 1:50,000 scale map of
'he Washington, D.C. area available from the Geological Survey offices in
Reston, VA, and Denver, CO, and from various commercial vendors that
sell USGS maps and publications. Further information on the procedures
described abovc may be obtained from the U.S. Geological Survey, EROS
Data Center, Sioux Falls, South Dakota, 57198. Further information
regarding the acquisition of SPOT data scenes can be obtained from
Robert Lees, SPOT Image Corporation, Reston, VA (703-620-2200).

Be advised that the SPOT data presented here are copyrighted and
were obtained under license from the SPOT Image Corporation, Reston,
VA. This data may not be copied (whole or in part) from this disc onto
any medium for distribution without the prior written permission of the
SPOT Image Corporation (19).

4.2.2 Visual Analysis Before spectre, analysis of the subimage is begun, it

is necessary to describe the SPOT subimage. The portion of the SPOT image used

for this thesis is a section of the Washington D.C. mall. The physical dimensions of

the subimage is 980 m x 360 m. The subimage is bounded on the eastern side by

the western edge of the Lincoln Memorial rejection pool and bounded on the west

just past 17th Street. It is bounded on the northern edge, by Constitution Avenue

and on the southern edge by the Tidal Basin. Four bodies of water are contained

within the subimage. The subimage also contains numerous pathways and the two

roads called out previously. The remainder of the subimage is covered by grass-type

vegetation. Additional visual analysis of this subimage is given below.

As was mentioned earlier, the three SPOT subimages were viewed on the TS-

IP software. In order to match the individual pixels with a gray value number, it was

necessary to perform two steps. The first step was to blow up the area of interest (the

48 x 18 subimage) 800 percent. This was accomplished by using the zoom feature in
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the TS-IP software three times.' With the picture blown up to this magnification,

it was easy to see the individual pixels.

With the individual pixels resolved, there appeared to be several themes within

the scene. These themes were apparent by viewing the images at 800 percent mag-

nification with different palettes. The most helpful palettes were the 256-gray, the

blue-green-red-yellow (BGRY), and the topo. After viewing these subimages in the

different palettes, the themes that appeared to be present were roads, pathways,

grass-type vegetation, and water. It should be noted that these apparent themes

were verified using a National Geographic map for ground truth (37).9 Normally,

after an image has been segmented into themes, these areas are then compared with

the actual land cover for that area. With a ground truth standard, one can verify

if the initial classification of the segmented areas is correct. The methodology dis-

cussed in this paragraph is referred to as unsupervised classification. This method

is contrasted with supervised classification where the analyst knows what is on the

ground (in selected areas) before the analysis actually begins.

The second step in the analysis of the three subimages entailed matching the

segmented themes with individual pixel gray values. This process is described in

detail after a more thorough description of the target of interest is given.

4.2.3 Description of Target In the previous section, it was noted that four

bodies of water existed. These bodies of water are portions of the Lincoln Memorial

reflecting pool, the Constitution Gardens lake, the Tidal Basin, and the complete

reflecting pool east of the Lincoln Memorial reflecting pool. It is this last body of

'Within the zoom feature, the nearest neighbor option was selected rather than the straight
blow up option. The latter option was able to blow up the image data, but the output was not very
useful to work with.

91deally, the initial segementation would be verified by actually viewing the area under observa-
tion on the day of imaging. This is ideal because a scene will change as time passes. This change
in image scene is most obvious with the annual growth and death of vegetation. Since it is not
possible to travel back in time (to the data of the imaging, 19 and 24 March 1987), I will focus
on locating those types of landcover that are relatively permanent and unaffected by the seasonal
changes.
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water that I will attempt to find with the modified B&W model. Water in general

was chosen for one main reason. Water is spectrally distinctive enough to be visu-

ally distinguishable from the background when viewing the subimage on the TS-IP

system or when viewing the actual gray value numbers. The contrast of the other

themes against the grassy-vegetation background is not as high as water.10 Of the

four bodies of water, the reflecting pool east of the Lincoln Memorial reflecting pool

was chosen for two reasons. The first and most important reason is that since it is

manmade, it is relatively permanent over time. This is contrasted with the Tidal

Basin which will vary monthly with the tides. If a target is constantly varying, then

the size -nd border length will also be constantly varying. Any variation in the tar-

get makes it more difficult to accurately locate. Since the reflection pool of interest

varies little over time, an approxiamte size and border length can be estimated. An-

other reason this reflecting pool was chosen is that the target area is not rectangluar

in shape. If an object is rectangular, the object can be easily found with previously

existing implementations of the B&W model11 (7). In the following section, all four

bodies of water are spectrally analyzed in all three channels.

4.2.4 Spectral Analysis Before the data could be spectrally analyzed, it was

necessary to break each channel data set down into its individual gray values. Using

a FORTRAN program, I read in the three subimages and recorded the gray values in

each image. In Appendix F, the gray value count and gray value histogram for each

channel is recorded.12 Reviewing this data reveals several interesting observations.

The first is the range of the spectral values. In Channel 1, the values ranged from

0 to 227, while in Channel 2, the range was 0 to 216 and in Channel 3, from 0 to

l°These statements about the spectral distinctiveness of water only apply to Channel 1. While
the water regions can be seen in the other channels, it is difficult to tell where the borders are
located.

"11A GAMS implementation of the B&W model to find rectangular subregions was created in
1991 by Dan Burke, Research Assistant at the Air Force Institute of Technology.

"12Also contained in this appendix is the FORTRAN program created to tabulate the gray value
counts.
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212. These different ranges were expected since the spectral signature for an object

changes as the spectral band changes. Another interesting point was that the range

of gray values was not continuous (between the upper and lower bounds) as one

might expect. Rather, most of the image data had spectral values that were not

continuous. Upon viewing the data visually in the TS-IP software, clues were found

to suggest why the ranges are not continuous from 0 to 255. As was mentioned earlier

in the visual analysis section, only four types of land cover appear to be present in

the subimage. Because the image does not vary much in content, the subimages will

not contain the whole spectral range of 0 to 255.13 The most significant reason why

the spectral values are not continuous is because of the image processing performed

on the SPOT imagery. Recall in Section 4.2.1 that the imagery was processed with

a multipoint linear stretch to increase the contrast. The result of this stretching will

cause gaps to appear in otherwise continuous data. The magnitude of the stretch and

the points of the stretch are unknown. According to Glenn Kelly, of the EROS Data

center, the original records for this work no longer exist, so it is difficult to determine

the magnitude of this linear stretch (18). In the following sections, spectral analysis

will be confined to four bodies of water since that is what I am attemping to find.

The process of spectral analysis in each channel is not unique to water and could be

applied to any other type of land cover in the subimage.

4.2.4.1 Channel 1 Spectral Analysis When viewing the histogram of

pixel gray values, it is not obvious where the natural break in the image gray values

occurs for the water subregions. For this reason it was necessary to look at the

ground truth map and compare that with the visual image on the TS-IP system

and also the actual gray values. In this channel, all the water subregions showed

up as navy blue areas on the TS-IP system when using the BGRY palette. The

"13With only four major land cover types, the spectral signatures will be discrete rather than con-
tinuous. There are many other features not present which would yield different spectral signatures.
Some of these features include: forest-type vegetation, buildings, mountains, snow, bare rock, sand,
ocean, etc.
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size and shape of these areas were then compared to the ground truth map. Using

control points in both the map and the visual image, the water subregions were

identified.1 4 The TS-IP system, has the ability to display the pixel gray value for a

given location."5 With the water subregions located, all that was necessary was to

record the gray values. In these four subregions, the spectral range for water was

from 0 - 22.

I also scanned past the subimage borders to see it there were any other sub-

regions in the image with this characteristic spectral range. Two major subregions

were found with this same spectral range in the vicinity of the Mall. The first sub-

region was the Potomac River, which was expected. The second subregion was more

of a surprise. The shadow of the Washington Monument also had gray values in this

characteristic spectral range. Also contained in the subimage was what appeared to

be noise with the same spectral range. All of these noise-type subregions were one

or two pixels in size. I was not able to definitively identify what these areas were

with the ground truth map. In Appendix G, these water subregions are identified

with the letter W. The subimage is surrounded by a border of 999s. This border

serves two functions: 1) all the subimage pixels are now interior pixels i.ad 2) it is

easier to locate the position of a given pixel. The numbering of the pixels begins

with the first row of 999s. The first subimage pixel is thus in position number 22. I

have converted the rest of pixels in the subimage to a blank space.

From the processed subimage in Appendix G, it is obvious that this spectral

range identifies water, but not uniquely.16 In Table 12 the gray values for water

and the combined number of these pixels from the four subregions are charted.

The total number of pixels in the subimage within this gray value range is also

given. The overall accuracy in indentifying the water contained in the four subregions

"14In digital imagery, control points are locations/features that readily apparent in both the map

and image.
"5 This is the examine point option on the TS-IP system.
16 Compare the processed image in Appendix G with the ground truth map and the similarity

can be seen.
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(with this spectral range) is 94 percent. More spectral information is contained in

Channels 2 and 3, so it is necessary to also process Lhese channels. By acquiring

more information, the sizing and locating of these water subregions should become

more accurate. Channel 2 is spectrally analyzed in the next section.

Table 12. Classification of Water in Channel 1

Gray Pixel Count Classification
Value Water Areas I Total1 Accuracy

0 57 58 98%
3 2 2 100%
6 3 4 75%
9 4 4 100%
13 2 2 100%
16 3 5 60%
19 2 2 100%
22 3 6 50%

4.2.4.2 Channel 2 Spectral Analysis In Channel 2, the water regions

were not as spectrally distinct. Therefore, the same spectral analysis methods (visual

inspection) used in Channel 1 could not be used for Channel 2. It was first necessary

to locate the water subregions so the gray values could be recorded. With these

values recorded, the characteristic gray value range for water in Channel 2 can be

identified. By using the Rectification Assumption described in Section 4.2.1, the

water subregion can be easily located. In other words the location of the water

pixels in Channel 2 have the same location as in Channel 1. Using this methodology,

the spectral range of water is 5 - 166. This wide range for water shows why the

water is not as spectrally distinct as in Channel 1. Even the color of the water

(a multiband concept) varied over this range.17 This range of colors for the water

spectral range is shown in Table 13.

"1I do not mean the actual color of the water but rather the false color of the water as shown on
the TS-IP system with the BGRY palette.
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Table 13. False Color of Water in Channel 2

Gray Value False
Interval j Color
5 - 39 Navy Blue

48 Royal Blue
58 Blue
67 Light Blue

77 - 86 Turquoise
96 - 105 Light Green

111 - 116 Green
127 Olive

138- 166 Red

From Table 13 one can see that the spectral range for water is considerably

larger in Channel 2. This range is more significant when the spectral range for the

entire subimage is considered: 0 - 216. Thus, the spectral range for water nearly

encompassed the entire spectral range for the subimage. I also scanned the rest of

the subimage to see what other subregions were in the water spectral range. In

general, grassy vegetation and the shadow of the Washington Monument were also

navy blue in color. The pathways and roads were several shades of green in color.

With this overlap in spectral signatures, it is difficult to uniquely identify the water

subregions with Channel 2 spectral information alone.

In Table 14 the accuracy in identifing the water subregions is shown. There

is a marked decrease in the overall accuracy when compared to Channel 1. When

viewing the Pixel Count Total column, one can see that there are many other regions

(in the subimage) composed of the same spectral values as water. This observation

is shown graphically in Appendix G. In this processed image, the pixels with a gray

value between 5 and 166 are labelled with the letter W. With this processed image,

it is difficult to distinguish the four regions of water.
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Table 14. Classification of Water in Channel 2

Gray Pixel Count Classification
Value Water Areas ] Total Accuracy

5 3 5 60%

6 1 8 12.5%
7 4 16 25%

9 3 28 11%
10 3 33 9.1%
20 2 26 7.7%

29 5 38 13%

39 5 41 12%
48 10 45 22%

58 6 59 10%
67 4 58 6.9%

77 7 39 18%
96 3 48 6.3%
105 5 47 11%
111 3 28 5.2%
116 3 35 5.7%
122 1 31 3.2%
127 2 12 17%

133 1 22 4.6%
138 5 26 19%
144 2 11 18%

155 2 24 8.3%
166 1 9 11.1%
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4.2.4.3 Channel 3 Spectral Analysis In Channel 3, the water regions

were again spectrally non-distinct. In fact, the problem in locating the water was

similar to Channel 2 but worse. Therefore, the Rectification Assumption was again

used to find the spectral range for water. Using the same methodology as applied to

Channel 2, the spectral range of water is 5 - 200. This wide range for water shows

why the water is not visually apparent when veiwed on the TS-IP system. Once

again, the false color of the water varied greatly over this spectral range. This range

of colors for the water spectral range is shown in Table 15. The range for the entire

subimage is 0 - 212. Given that the range of water nearly matches this subimage

range, the classification accuracy will be very low as shown in Table 16.

In Appendix G, the Channel 3 subimage has been processed so that any pix-

els within the 5 - 200 range are labelled with the letter W. This processed image

graphically shows the poor classification accuracy of this spectral range for water.

In scanning the rest of the subimage, other land cover themes had the same spectral

values. In general, the grassy areas and the Washington Monument shadow were

navy blue in color. The roads were green in color, and the pathways were a combi-

nation of red and orange colored pixels. Based on this data, classification accuracy

of the water subregions with Channnel 3 spectral data alone is very low.

In summary, each of the three channels were spectrally analyzed to determine

the gray value range for the four bodies of water in the subimage. Of the three chan-

nels, Channel 1 has the most distinctive spectral range for water. The consequence

of this fact is that the water regions are easily resolvable from the background. Due

to the extended range for the other two channels, the water regions were not easily

resolved. When Channels 2 or 3 were combined with Channel 1, two noise-type pixels

were removed from the processed image. These pixels were located at positions 594

and 665. The information gained from this analysis will be used to find the reflection

pool in the subimage. The spectral analysis information serves as an input into the
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Table 15. False Color of Water in Channel 3

Gray Value False
Interval Color

5 - 19 Navy Blue
37 Royal Blue

46 - 55 Blue

64 - 67 Light Blue
73 - 82 Turquoise
91 - 106 Light Green

111 - 117 Green
128 Olive

133- 138 Red
161 - 178 Orange
183 - 200 Lt. Orange

computer model, namely the pixel bounds constraint. The running of the modified

B&W model will be explained in the next section.

4.3 Computer Model Runs

In this section, several modified versions of the B&W model will be run to find

the reflection pool of interest. The model will be run with different combinations of

channels and also a combined image. The combined image is the result of merging

two channels with the NVI process. These different sets of data will be compared to

see which one gives the most accurate answer and which one is the most efficient in

terms of computer processing time.

4.3.1 Selection of Computer Model Equations In Chapter 3 many modifica-

tions were suggested for the B&W model. In this section, the various improvements

will be tested on small problems before attempting to use them to solve the SPOT

subimage problem. One of the image processing methods explained in Chapter 3

was the creation of a new objective function that would bias the selection of pixels
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Table 16. Classification of Water in Channel 3

Gray Pixel Count Classification
Value Water Areas [ Total Accuracy

5 1 2 50%
6 1 4 25%
8 2 27 7.4%
10 3 21 14%
19 3 28 11%
28 2 32 6.3%
37 1 28 3.6%
46 3 36 8.3%
55 2 45 4.4%
64 6 38 16%
73 10 41 24%
82 5 47 11%
91 6 39 15%

100 2 41 4.9%
106 3 33 9.1%
111 3 44 6.8%
117 3 34 8.8%
122 4 32 13%
128 1 20 5%
133 3 26 12%
156 1 16 6.2%
161 3 15 20%
167 2 14 14%
172 1 12 8.3%
178 2 10 20%
183 2 16 13%
189 1 7 14%
200 1 5 20%

103



to the mean pixel gray value. In order to process more than one channel of data, it

is necessary to incorporate the process of multicriteria optimization. One objective

function which merges these two concepts is shown below. Note that this equation

is only valid for the combining of two channels. It can be extended to more than two

channels as long as the number of channels to be processed matches the number of

lamda weights.

Z = Max [A , ( (- c + A2  - (65)(i I(Y -cii) +I (Y ciXi2)1 + 1

I used this objective function on a small 7 x 7 matrix. When run on the GAMS

system, the following error resulted:

51 IN EQUATION OBJ.. ENDOG ARGUMENT(S) IN FUNCTION

Before attempting to rework and rerun the program, I called the GAMS Devel-

opment Center in Washington DC. According to Erwin Kalvelagen, two operations

were causing this problem: the absolute value function and the presence of a variable

(xi,k) in the denominator."8 Although the objective function appears to be linear,

these two operations (absolute value and division with a variable) make it nonlin-

ear for GAMS. Erwin added that the absolute value function makes the derivatives

noncontinuous when GAMS attempts to solve the problem. He said there was a

possibility that the problem could be solved with the MINOS option in GAMS, but

that the integer solution would be forfeited. He confirmed that if the problem is to

be solved as a mixed integer problem, the absolute value and the division operation

need to be removed (16). For a partial listing of this GAMS run, see Appendix H.

"I8ln GAMS, an endogenous variable is a variable which the program is attempting to solve for.
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In light of this new knowledge on the limitations of GAMS, it was necessary

to reformulate the objective function. Although the three objective functions in

Section 3.2.4 are mathematically correct, they can not be solved as mixed integer

problems in CAMS. The reason for this limitation is that all of the three new objec-

tive functions have an endogenous variable (xik) in a mathematical function. Given

that the new objective functions are not compatible with CAMS, the original objec-

tive function with lambda weights will be used. An equation that will work as either

a maximization or minimization objective function is given below.

n n
Z = Max/Min [A CilXik + A2  Ci2Xik) (66)

While this equation will work, it was pointed out in Chapter 3 that it will be

biased. If the maximization objective function is used, the model is biased to pick

the spectrally lighter gray values. If the minimization objective function is used, just

the opposite will occur. Thus, the model can be run with this objective function, but

the analyst needs to remember the implications of a maximization or minimization

objective function.

Another modification that I attempted to implement was an improvement to

the contiguity constraint. For a given sized object I attempted to enforce contiguity

with the following equation.

If X(I, K) = 1 then

X(I- 1,K) + X(I + 1,K) + X(I - 20, K) - X(I + 20, K) >_ 1 (67)

With this equation, each pixel selected (X(I, K) = 1) is required to have at least

two first order neighbors. The efficiency of the model should be improved since the

equations for the Pi3k and Nijk variables could be removed. When I attempted to

run this improvement in the GAMS program, the following error resulted.
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57 IN EQUATION C6.. ENDOG OPERANDS REL OR AND XOR

X(I, K) is a variable and this error indicated that GAMS does not allow an equa-

tion to be complied based on the status of a variable. In this instance I was not

allowed to use the EQ (equals) operator with the endogenous variable. I attempted

the program again but this time I removed the conditional "If X(I, K) = 1 then"

statement from the constraint. This modified contiguity constraint successfully ran

in GAMS, but the region found was not contiguous. Rather, several subregions were

found that added up to the given sized area. However, the objective function takes

precedence over this partial contiguity constraint to select pixels which will maximize

or minimize the objective function as required.

Given these results, I was forced to use original size and border length con-

straints called out in Section 3.1. However, two major improvements can be made

to the model. These improvements are the pixel bounds constraint and the multi-

objective function. With this model I will attempt to locate the reflection pool of

interest using two channel combinations.

4.3.2 Running of the Model In this section, the model will be run with dif-

ferent channel combinations and with different lambda weights. The goal of these

programs is to locate the reflection pool identified earlier and shown in Appendices

G and I. The spectral analysis performed earlier in this chapter will be used to set

pixel gray value bounds for the model. Before running the model to find this one

region, I performed a three-channel filter to identify all the water subregions. These

subregions represent the possible pixels for selection by the model. Following this

run, three sets of two-channel runs will be run and their results analyzed. If different

solutions result, they can be compared to the efficient frontier to select the noninfe-

rior solution. None of the solutions will be on the efficient frontier since none of the
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water subregions were homogeneous.' 9 This statement can be verified by reviewing

Appendix E.

4.3.2.1 Thrtr-Channel Filter To identify the water regions in the SPOT

subimage, I modified the objective function to incorporate all three channels. No

lambda weights were used in this objective function since all the channels were of

equal weight. In the three-channel filter I eliminatcL- the border length and area con-

straints. With this representation of the model, all water regions will be identified

based on their spectral values alone. This program is similar to the parallelepiped

method discussed in Chapter 2. In Appendix I a character representation of this

three-channel filter is shown. In addition, a partial listing of this program with the

pixels selected is included. The solution in Appendix I shows the four main bodies

of water along with random pixels scattered in tWe subimage. These random pixels

may be noise.

4.3.2.2 Channel 1 - Channel 2 Programs In this section Channel 1 -

Channel 2 programs will be run to locate the reflection pool identified earlier. The

objective function is a maximization one and will incorporate the concept of lambda

weights (See Equation 66). All the constraints identified in Chapter 3 will be used.

The water region of interest has an area of 24 pixels. The corresponding border

length is 44. Both of these values can be verified by reviewing Appendices G and I.

Recall in Chapter 3 that a range of border lengths can be calculated for a given size

area. For this problem, the border length range consists of the even values from 36 to

192.20 In reality, this upper border length is too high. The B&W model stated that

the upper border length was four times the size of the area. This number must then

be multiplied by two since the actual border length is double accounted. In order

"9 1n this context, homogeneous means pixels of the same gray value. If the objective function
was a maximization, all the pixels would need to be at the upper spectral bound. If the objective
fuction was a minimization one, just the opposite would be true.

"2°This range of border lengths was calculated using the border length equations in Section 3.1.
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for each pixel to have a border length of four, they would have to be non-contiguous.

Because of the contiguity constraints, this condition would not occur. The border

length constraint is exact in this problem since the target is aligned with the pixel

grid. Recall that if this were not the case, a stair step border would result. If this

were the case, the analyst could start with the lower bound of the border length for

a given area. Then the analyst could systematically increase the border length by

two until the desired subregion was found.

In addition to the constraints identified in the B&W model, two additional

constraints were added to this program. These constraints set the spectral bounds

for water in each channel and set the value of Xik to zero if the pixel gray value is out

of this range. With these constraints, only the water-type pixels are considered for

selection into a water region. These constraints were implemented in GAMS with

the following lines of code:

X.FX(I,"1")$(C(I,"A") LT 22) = 0;
X.FX(I,"1")$(C(I,"B") LT 5 OR C(I,"B") GT 166) = 0;

where the A variable represents Channel 1 and the B variable, Channel 2.

A total of eleven runs were made with the Channel 1 - Channel 2 combined

objective function. In Equation 66, the lambda weights were each allowed to vary

from 0.0 - 1.0. A partial listing of the second run (lambda weights of 0.1 and 0.9)

is shown in Appendix J.21 In Table 17 the results of varying the lambda weights are

given.

In these GAMS runs, a total of 8723 equations were generated for each program.

Considering that the objective function is a maximize one, one may be initially

inclined to select the second run as the optimal solution. However, one should recall

"2 Only a partial listing of the GAMS output is included in Appendix J, since the length of the
output was typically 45n+ pages. The FORTRAN programs to generate the GAMS adjacency and
cost matrix are also included in Appendix J.
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Table 17. Results of Channel 1 - Channel 2 Runs

GAMS Lambda Objective Iteration Execution Resource
Run Weights Value Count Time (Sec) Usage

1 0.0 1.0 *

2 0.1 0.9 1706 1544 119.43 37.81 544.89
3 0.2 0.8 1524 1425 123.88 38.18 513.58
4 0.3 0.7 1342 1405 122.16 38.27 509.36
5 0.4 0.6 1160 1365 125.65 39.30 510.61
6 0.5 0.5 978 1634 118.75 39.15 587.86
7 0.6 0.4 796 1629 122.29 39.38 589.96
8 0.7 0.3 614 1542 123.53 43.36 577.38
9 0.8 0.2 432 1727 126.02 37.39 632.02
10 0.9 0.1 250 1517 126.12 34.52 548.37
11 1.0 0.0 68 1353 132.36 41.06 566.04

* No final solution after 5000 iterations.

that the efficient frontier value will change as the lambda weights are changed. All

of these runs selected the same 24 pixels. Their numerical positions are 528, 529,

547-550, 567-570, 587-590, 607-610, 627-630, 648, and 649. All of these pixels were

fully allocated. In other words, the Xik values for each of these 24 pixels were one.

These pixels exactly match the size and the location of the reflection pool shown

in Appendix I. Since there is no variance in the pixels selected, an optimal solution

can not be chosen. Rather, they are equal answers in their optimality. They are all

equally spaced from the efficient frontier. If different 24-pixel-area subregions were

selected, the efficient frontier would need to be drawn and the solutions plotted. The

solution(s) closest to the efficient frontier would be the optimal solution. Recall that

the term optimal in this context is speaking strictly in an operations research sense.

It was explained earlier that the optimal solution in digital imagery processing may

not be the same. In other words if different subregions were found by changing the

lambda weights, the solutions may or may not be correct for the imagery analyst.

The analyst will need to perform a ground truth check to see if the optimal solutions
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are valid. This problem will be minimized if the target of interest has a characteristic

spectral signature that is different from all other objects in the image.

An obvious entry in Table 17 is run number one. With this run, only Channel

2 is being processed. By reviewing the feasible pixel regions in Appendix G, one

begins to understand why the iteration count has suddenly exploded. Suddenly the

program has to check nearly every pixel in the picture. With this increase in the

number of possible solutions, the branch and bounding will also increase. Additional

runs were made, but program continued to abort on the 5001st iteration22 .

It is difficult to measure the efficiency of the programs when they were run with

different lambda weights. The CAMS output gives several measures of performance

to compare the runs. The iterations and computer time usage (execution time and

resource usage) varied as the weights changed. However there was not a direct

correlation among these four measures of performance. For example, Run 5 had the

lowest iteration count (for an objective function with two weights), but it did not have

the lowest execution time or resource usage value. It is not known which execution

time is a better measure of performance for the CAMS runs. The first execution

time was typically given early in the CAMS output and the second execution time

was the last piece of information given in the output. No units were given to the

Resource Usage values so they can not be directly compared to the execution times.

When running these programs, the wait for an answer was sometimes several minutes

and at other times over an hour. The main factor in this wide range of waiting times

is the load on VAX. As the number of users and jobs increase, the performance seen

by the individual user will decrease. This variance in performance is characteristic

of mainframes that are operated in a time sharing mode.

"22Note the iteration limit for this program was set to 5,000. 1 ran several of the programs with
higher iteration limits (7,000 - 8,500), but the program still failed to produce a noninferior solution.
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Although the objective values and all other parameters measured in Table 17

had different values, there was no clear run which one was optimal in terms of com-

puter performance. In terms of comparing all the solutions to the efficient frontier,

all the solutions were equally optimal. The next set of GAMS runs will consist of

Channels 1 and 3.

4.3.2.3 Channel I - Channel 3 Programs In this section, eleven Chan-

nel 1 - Channel 3 programs were run to locate the reflection pool identified earlier.

The program remains the same as the Channel 1 - Channel 2 programs, but the

Channel 3 gray values have been substituted for the Channel 2 gray values. The

new water spectral bounds were set with two lines of GAMS code:

X.FX(I,"1")$(C(I,"A") LT 22) = 0;
X.FX(I,"1")$(C(I,"C") LT 5 OR C(I,"C") GT 200) = 0;

where the variable A represents Channel 1 and the C variable, Channel 3. The

water region of interest remains set at a size of 24 pixels and a border length of 44.

In Table 18 the results of varying the lambda weights are given.

The results of this program is comparable to the first set of runs. The same

set of 24 pixel were again selected by all the runs except the first one. All these

pixels were fully allocated in the solution. Once again since different subregions of

24-pixel-size were not selected, there is no variance in the optimal solution. Even

though the objective function value changes, the last ten programs are all equally

optimal.

4.3.2.4 Channel 2 - Channel 3 Programs The Channel 2 - Channel 3

GAMS programs were coded just like the other two channel combinations, but the

output was very different. In fact, none of the eleven lambda combinations resulted

in an final answer. Rather, each program stopped after 5001 iterations. In my
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Table 18. Results of Channel 1 - Channel 3 Runs

GAMS Lambda Objective Iteration Execution Resource
Run Weights Value Count Time (Sec) Usage

1 0.0 1.0 *

2 0.1 0.9 2253.2 1380 121.32 41.10 511.53
3 0.2 0.8 2010.4 1373 120.94 38.15 503.94
4 0.3 0.7 1767.6 1383 125.98 38.92 515.04
5 0.4 0.6 1524.8 1363 125.53 38.22 509.57
6 0.5 0.5 1282.0 1435 124.74 37.73 522.79
7 0.6 0.4 1039.2 1603 124.94 39.80 586.00
8 0.7 0.3 796.4 1495 124.06 39.57 522.00
9 0.8 0.2 553.6 1656 125.00 37.25 597.13
10 0.9 0.1 310.8 1292 124.93 39.74 476.45
11 1.0 0.0 68.0 1353 132.36 41.06 566.04

• No final solution after 5000 iterations.

GAMS programs, the iteration limit is set to 5000. On the 5001 first iteration, the

programs aborted and output the current solution file. Many times the objective

function was negative in value and the total number on pixels did not add up to 24.

This high iteration count is the direct result of water not being spectrally distinct

in both channels. In the other two-channel combinations, Channel 1 serves as a

filter to reduce the number of possible solutions. Therefore, even though water is

not spectrally distinct in Channels 2 or 3, Channel 1 filters out the majority of the

undesired data. The difference between the feasible pixel regions is easily seen in

Appendix G. In this appendix, the four major bodies of water are easily in Channel

1, but this is not true for the other channels.

4.3.3 Efficient Frontier Programs In the Channel 1-2 and 1-3 combinations

there were no variations in the solution.23 In each program, the same set of 24 pixels

were selected even though the lambda weights were allowed to vary. It appears

23This statement holds true for all the lambda weight combinations except when Channel 2 or 3
were given a weight of one.
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that with an area constraint of 24 pixels and a border length of 44, the model is

not allowed to select any other solution of 24 pixels.24 To see if other pixels can be

selected and if an efficient frontier can be plotted, I will vary the border length of the

target. The original B&W Model is a multicriteria objective function in itself. The

area and border length constraints were originally in the combined objective function

and subsequently placed in with the constraints. This method of subordinating an

objective function into the constraints was described in Section 3.3.1.1. By varying

the border constraint, other areas should be selected and an efficient frontier should

result. To test if this hypothesis is correct, I will run programs where the border

length and the lambda weights are allowed to vary.

In the following sections, I will attempt to still find an area of 24 pixels, but

the border length will be allowed to vary. Recall in Chapter 3 that for a given

size area, there is an acceptable range of border lengths. For an area of 24 pixels,

the acceptable border length range is 36 - 192. Not every number in this range is

acceptable, but rather every fourth number after the number 36 (i.e. 36, 40, 44,

... , 192). Therefore, there are only 41 possible border lengths for an area of 24

pixels. Rather than attempt to run all 41 border lengths and all lambda weights

(451 programs), I will run several border lengths to get an idea of what the efficient

frontier looks like. As the border length decreases from the maximum, I would expect

the number of contiguous pixels to increase.

4.3.3.1 Border Length Of 192 In these first set of runs, the border

length has been set to the maximum of 192. With this border length, each pixel has

a border length of eight. The implication of this maximum border length is that the

selected pixels are no longer required to be contiguous. Rather, 24 non-contiguous

pixels could be selected if this combination maximized the objective function. The

241t should be noted that there are 26 contiguous pixels available for selection in that portion of

the Tidal Basin contained in the subimage.
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results of my model with a maximize objective function, area of 24, border length of

192, and varying lambda weights are shown in Table 19.

Table 19. Results of Channel 1 - Channel 3 Runs with 192 Border Length

Selected GAMS Computer Runs: Channel I - 3 Combination
Pixels Lmbda Weights (Measured in Tenths)
(Z~k) 1011.0 1 119 1 218 1 317 hs)6T 15 6/ 13 1 8/2 1 971 1 -7uO/O
142t X X X X X IX
163t I X X X X X IX X X X

184t X r X X X Ix X X -X
244 t X- -- x X X x x X X X
262t X X X X X X X
264t X X XXX X X X X X
283 t X X X X X

529e --n eX t= X Xd57
542§ X X X X X X X X
,547* XX
550, X X X X
567* X X X
568, X X X X
570* X-r X X

588- X X X X X X X X X

589n TablX19 X X X X X
590= X X X X X X X X X
594*
608, X X X - X X X X X X
609*X

N610 X X X X X X

630' X
648w- X

665* or X686* X
706* X X

710 X879* X X

1 935. X X X X Xs X X X X X
19361 1 X X X X X X X X X1

,937ý X -- X X X X X X X X
938; X X X X X X X X
9391 X -X X X X X X X

95•X ". X X X X X X X X

9 6 tXX X I X X
974 ; 1 1 1 1 EX-

Ob Vlu I 17.0 2838.4 F5 02.0 2166.0 11831.0 1492 1167.A 844.4 554.4 39.

,%N o fnal solution after 5000 iterations. t= C onstitution G ardens Lake. = = R fe t o o l
§ Linol Reflection Pool. *=Noise Type Pixels. J= TidalBasin.

In Table 19, the lambda weights are designated with a #/# label. The first

number represents the lambda weight measured in tenths for objective function 1

(Channel 1) and the second number represents the lambda weight for the second

objective function (Channel 3). This labelling holds true for all the computer runs

except the first and the last. On these two runs, the fully weighted channel is

labeled with a 1.0. This distinction is made to av•oid confusion between 0.1 and

1.0. In all except the first run, the pixels selected were fully allocated. The label
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Obj Value represents the combined objective value for Channels 1 and 3. All of

the computer programs were successfully run except the first one (0/1.0). On this

run, the program aborted after 5,000 iterations. This problem was the result of the

feasible region being too large, as was previously explained. This problem continued

to exist in all the other border length programs for the Channel 1-3 combination.

As the lambda weight for Channel 1 increases from 0 to 1.0, a trend is seen. In

general the selected pixels are migrating away from the Constitution Gardens Lake

and are reselected in the Reflection Pool and Noise-Type pixels. From computer runs

1/9 to 6/4, the pixels selected stay fairly constant, but in the subsequent lambda

weights the change in pixel selection is more noticeable. The combined objective

value changed as the lambda weights changes. The concept of an efficient frontier

is beginning to come into play since the 24 pixels selected change as the lambda

weights change. One final observation about these solutions is that the pixels in the

Tidal Basin area remained fairly fixed. In the next set of runs, the border length is

changed to 100 while the area remains fixed.

4.3.3.2 Border Length Of 100 In this second set of runs, the border

length has been set to 100. With this border length, the pixels are still not forced

to be all contiguous. The results of my model with a maximize objective function,

area of 24, border length of 100, and varying lambda weights are shown in Table 20.

In these computer runs, the most noticeable difference from previous runs is

the noninteger selection of the xik's. In Table 20 the noninteger pixels are allocated

with a decimal number. This number indicates what percentage of that pixel was

allocated to the selected subregion. Up until this point, all the solutions have been

integer. These results are significant since all of the GAMS programs in this thesis

were run as a mixed integer program. In addition, the Xik's are assigned as binary

variables in the code. Even though this was true, this did not prevent the noninteger

solutions from occurring. Additional runs will be made to see if this trend continues
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Table 20. Results of Channel I - Channel 3 Runs with 100 Border Length
Selected GAMS Computer Runs: Channel I - 3 Combination
Pixels La bda TW a (MeasuTd ýTenths)

6/1-o I /F-F-771 Tm 1 5/5 i 7/3 1 8/2 1 9/1 1 1.010 11
1 163 t I I X X X X X X X

184 t X X X X -X -7-556
244t --- )T-- -- 3r- x X -- r- - ,
264 t X X X X X X X X X X
52Fr- 3r- -X -X X 0.7 0.3 X 0.222
529* -- y- - X X -6-7 0-3 X 0.222
542§ X X X 0.5 X X X -X -X
54 7' 0.222 0.333
548* X X X X 0.7 0.3 Om222 Oý333 X
5491" 0.571 0.571 0.571 0.571 0.7 0.3 0.222 0.333
550, X X X X X X X -X
56 7* -- y-- -- r-
568* -T- -- X- -X -- y- -- y- -X
569* 0.571 0.571 0.571 0.571 0.7 0.3 X X X
570r- X X X X X -X -X X X
587' X X
588* X X X X X X
589* X X -X X X X X X X
590, x -K -- T-- X X "--y- -- R- - ,
607' -X,
608* X X X X X X X X X X
609* X X X X X X X X
610* X X X X -- T-- --- x- -- r-
628* X X -- 3r- X X X 0.4
629* X X X X X X 0.4
630' X -X 0.4
665*
686*
706* X
879
935 t I X X X X X X
9361 1 X X X X -X X X X X
937! -X X X X X X
938: x X X X X
9.39; -T-- r- - --- X X X
9511 0.857 0.857 0.857 0.857 X 0.5 0.8 .889 X
955: 0. ft44 4
956: 0.444
9571 00.444
958t 0.444
959 0.444
968 X
975t 0.444
§7-6T- 0.444
97T; 0.444
978 0,444
979t 0.444

..... Ul u eý 1 3284.4 1 2933.8 1 2583.2 1 2232.7 1 1892T-F 145-6.4 51-2.0 .0

na so'u on after 5000 iterations. t= Constitution Gardens Lake. zz Reflection Pool.
lFj=j=L.ýn!c0[1n R.Ifflection Pool. Noise TyFF--P-i-,I, - J= Tidal Basin.
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and if it does a hypothesis will be offered as to why these noninteger results are

occurring.

In general, the pixels selected in these runs remained fairly constant with the

pixels divided over the Constitution Lake, the Reflection Pool, and the Tidal Basin.

The most noticeable change in pixel selection occurred on the last run (1.0/0). In

this solution, many more Tidal Basin pixels were partially allocated to the water

subregion. Due to the relatively loose border, the pixels are not required to be con-

tiguous. For this reason, the pixels are mainly allocated in the three areas mentioned

previously.

4.3.3.3 Border Length Of 64 In this third set of runs, the border length

has been set to 64. With this border length, more of the pixels should be forced to

be contiguous since the border length is decreasing. The results of my model with

a maximize objective function, area of 24, border length of 64, and varying lambda

weights are shown in Table 21.

In these solutions, more of the pixels were contiguous as was hypothesized

before the runs. Since the border length has decreased, the selected pixels are forced

to be more contiguous than previous runs. It is possible that the border length

shortening has also caused the majority of the solutions to once again be integer.

Another possibility is that there is a natural geometric shapes in the two images for

this area of 24 and border length of 64. In the next run, the border length will again

be shorten to see what the affect is on the solution.

4.3.3.4 Border Length Of 60 In this fourth set of runs, the border

length has been set to 60. I would expect more pixels to be contiguous in these

runs. The results of my model with a maximize objective function, area of 24,

border length of 60, and varying lambda weights are shown in Table 22.
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Table 21. Results of Channel 1 - Channel 3 Runs with 64 Border Length

Selected GAMS Comput r Runs: Channel 1 - 3 Combination
Pixels I 9Lambda We~ihts (Ye~srd in Tenths) 71 1 191 1 1010(X2k)1 0/10 1[19 r[ 11 -37~ 82 1~ [1.7 75 6
244t II 0.143 0.143 _ __

264 t 0.143 0.143 _ __

- -r'x- -x - -X -x X *~ x
529' - X X X -X -X

917W 0.571 0.571
548* X X X

567. 0.57-1 0.571 -K

9587*051 .7
9593 IXp
58j Vau 289. 254. 217. 1 . 151. 127. 99. 69. 40. 2.
No0 fia souto afe 500 itrtos --- Cositto Gadn ae Rfeto ol
607 Xnon eeto 0.*= os p x .3 a tn

6087- -X X X X X118



Table 22. Results of Channel 1 - Channel 3 Runs with 60 Border Length
flSelected GAMS Computer Runs: Channel 1 - 3 Combination

Pixels Lambda Weihts (Meaured in Tenths)
(x2k 1X/- / / / 1 1 .1

630 X X X X X X X X

706* ____ X X X

547r6 0.723 0.869 0.869 0.869 0.3 0.1 082

5937 0.8 X X 0.9 0.9 0.9 0X6 0.7X 0.842

59611r 0..8923 0.869 0.869 0.869 0.6 0.1 .4

589* 0.7.92X 0.869 0.869 0.869 0.6X .1 .4

= ncn e cto X 0 . * -- 3e -- - Ixe X sn
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In these runs, the solution were primarily noninteger in nature. Only the third

(2/8) and last (1.0/0) runs resulted in integer solutions. In these runs, the pixels

selected varied greatly, but some of the solutions were repeated (e.g. runs 4/6-6/4).

These runs show that shortening the border length alone will not directly result in

integer solutions. In the final set of runs, the border has been further shortened to

52.

4.3.3.5 Border Length Of 52 In this final set of runs, the border length

has been set to 52. The results of my model with a maximize objective function,

area of 24, border length of 52, and varying lambda weights are shown in Table 23.

In these runs, the pixels selected remained fairly constant as the lambda weights

were changed. However, the decimal allocation of the Tidal Basin pixels varied in

runs 1/9 to 9/1. Only the final run (1.0/0) resulted in an integer solution. Given

these noninteger solutions, an explanation is needed. In the next paragraph, the

concept of an efficient frontier is applied to these sets of runs. In the following

section a hypothesis is stated for the cause of this problem and computer programs

are run to test the hypothesis.

4.3.3.6 Efficient Frontier From all the computer sets run, the best data

for plotting an efficient frontier is from the runs with a border length of 192. In these

runs all lambda weight combinations produce integer solutions, except the 0/1.0 com-

bination (See Table 19. This particular program aborted after 5,000 iterations. In

Table 24, the points for the outcome space is shown. The efficient frontier generated

from these points is shown in Figure 34.

4.3.3.7 Inequality Border Length Programs In the previous set of com-

puter runs, some of the outputs contained noninteger solutions. In these solutions,

some of the pixels were not fully allocated (indicated by a decimal number rather

than an X in the tables). One reason why these noninteger solutions may result is
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Table 23. Results of Channel 1 - Channel 3 Runs with 52 Border Length[fSelected jGAMS Computer Runs: Channel 1 - 3 Combination
Pixel' Lambd Wegs(esured in Tenths)

(k) I0/1,0 I 1/9--l 2/8 1 3 7 I 46 5 67_ 1138 1
f,28* I X X I X X X x x X X
529* X X X
54 7 0.091 0.091 X X X - X -X
548 X X X X X X X X X X

650* -X X x Y x X X X -X
57 . 0.091 0.091 X X X X X x

568 X X X X X X X X X X
569* XX I X X X X X x
570' X X X
587* 0.091 0.091 X X X X X X X X

58o fia souto afe 500 itrtos X Cositlo Gadn Lae = elcinPo.
589 X Xnol efXo oo= *-r ozre yp xs.*zalsn

590* -X X -X-1R1



Table 24. Efficient Frontier Points For Border Length = 192
Optimal Lambda Weights Outcome Space

Points IA A2  A ! ____

A' 0 1.0 *
B' 0.1 0.9 15.0 3159.0
C' 0.2 0.8 25.6 2812.8
D' 0.3 0.7 45.0 2457.0
E' 0.4 0.6 60.0 2106.0
F1 0.5 0.5 86.0 1745.0
G' 0.6 0.4 103.2 1396.0
H' 0.7 0.3 120.4 1047.0
I' 0.8 0.2 163.2 681.2
X' 0.9 0.1 271.8 282.6
K' 1.0 0 339.0 0

* No final solution after 5, 000 iterations.

K'

30 " 0 ' Efficient Frontier

250-

Z200
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Figure 34. Efficient Frontier For Border Length = 192
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that the feasible regions may not contain a water subregion of 24 pixels with the

designated border length. In other words, each border length requires a certain geo-

metric shape for given size area. If this geometric shape is not present in the image,

the objective function may be over riding the Xik binary variable constraint. If this is

true, more than 24 pixels could be selected to fulfill the border length constraint. To

test this hypothesis, I ran another set of programs where an upper limit is set on the

border length. With this formulation, the model is allowed pick the border length

that maximizes the objective function. Since the border constraint is an inequal-

ity rather than an equality, the model is not forced into only selecting a particular

geometric shape for a given size area. In these computer runs, the Channel 1-2

combination is used.

Border Length < 60 In this first set of runs, the border length

has been set to less than or equal to 60. Therefore, the model is allowed to select

border lengths that range from 36 (minimum border length) to 60. With this border

length, the pixels are not forced to all be contiguous. The results of my model with

a maximize objective function, area of 24, border length of less than for equal to 60,

and varying lambda weights are shown in Table 25.

The results for these runs were surprising. I expected integer answers since the

border length was allowed to vary. Rather, the second (1/9) through eighth (7/3)

resulted in noninteger solutions. Only the last three runs resulted in integer answers.

In order to give the model more flexibility in selecting the water pixels, the border

length was increased to 100. These runs are discussed in the next paragraph.

Border Length < 100 In this second set of runs, the border length

has been set to less than 100. With this increased border length, the pixels selected

can be more spread out. The results of my model with a maximize objective function,

area of 24, border length of less than for equal to 100, and varying lambda weights

are shown in Table 26.
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Table 25. Results of Channel I - Channel 2 Runs; Border Length < 60
Selected GAMS Computer Runs: Channel I - 2 Combination
pile[ . I 

Lambda d in(..k) 1 0/1-0 1/9 r-wr 1 -777 ]_- rý '8ý!nIjh4')7j3 1 8/2 1 9/1 M, 74
528 x I x x I x x x x
529 x x x x x x x
542
547 -x x x
3-48- -- X- -- 3F-- -X -- T- -X -X
549 x x x x x x x x x x
550 x x x x x 'A x -x
567 x x x -x
568 x I x x I x x x x x x x
569 x x x x x x x x
570 x x x x x x x
587 x
588 x x x x x x x x x x
589 -x -x
590
607 x x x x x x
608 x x X- x x x x x x x
609 x x x -x 3r- Y
610 x x x x x -x
627 x
628 0462 0,462 -T-4-62 -- = X x
629 --- 3F- x X -6.46-2 0.462 0.462 x I x x
630 x x x x 0.462 0.462 0.462 x x
648 x

x
649 x
686
706 x
935 0.789 0.789 6. 7 8-9 -- F-789 0.923 0.923 -T-923 -- K- X
936 0.789 0.789 d-789 -T-789 0.923 0.923 -- 079-23 --- K- -- X- - '
937 0.789 0,789 0.789 0.789 0.923 0.923 0.923 x x
938 0.789 0.789 0.789 0.789 0.923 0.923 0.923 x x
939 1 0.789 0.789 0.789 0.789 0.923 0.923 0,923 x x
956 0.132 0.132 0.132 1 0.132
957 0.132 0.132 0.132 0.132
958 Om!32 OoI32 0.132 0.132
959 0.132 0.132 6713-2 -T. 13-2
976 0.132 0.132 .132 .1.32
977 0.132 0.132 0.132 0.132

9 8 0.132 0.132 0.232 0.132
575 1 0.132 0.132 0.13

fr -Obj Value 1 1 2099.8 1 18T7.7 Fý F 143-3.5 r 121-8.2 996.4 1 774.7 1 547.4 331.2 d28,
11 JjNo final solution after 5000 iterations. t- Constitution Gardens Lake. Reflection PoU.---'ý

J= Lincoln Ketlection Fool. Noise-Type Pixels. Tidal Basin.
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Table 26. Results of Channel 1 - Channel 2 Runs; Border Length < 100
Selected GAMS Computer Runs: Channel I - 2 Combination

Pixels Lambda Weights (Measured irk Tenth ) 11
(xk) 1 0/1-0 1 1/9 1 2/8 1--377 1 416 1 1 6/4 1 YTY-T--8T2--l 97, 1 1.u/u 11
163 t 11 X X X X X
184t X X X X -X X X
244t X X -X -X -X X X
264 t X X X X X X X X X X
3 X X -X -X 0.333
529* -X -X X X 0.333
542* X --- R- -F3-33 -- T- X ýX X -
5F7'5"-- 0.333 X X
548- X X 0.556 X X X 0.333 X X
549' X 0.556 X 0.333 X
ST07, X X X X X X X X X
567* X X X X
568. -X -X -- y- X X X
569* -X -- TS-56 -X -F 33-3 X
5TO-* X X X X X X X X X
5F7r'-- -- = -X -X
588- X X X X X X X X I--T- -
589* X X X X X X X X X
590* X X -X -X X X X X X
607.
608* X -X! X -X X X X
609* X X X X............. 61.0..ý -A--- -- T- -5F-- -x x XX . ....... ..
628*
629* X
630* X X X X X X -X - X
665*
686* X
879* X X
935 -X X X
936; X x -x x -X
937 X X X X X -- K- X

9 9,
939 t I X -X X X X X

E9381 
I 

X 
X 

X 
X 

X 
X 

X 
X 

X

9 9,

51 t X
9551 X
956: X

571
9F8 -I
9591 X
96"

11 Obj Value 1 2494.1 1 2232.2 1 1966.6 1708., 1185.6 432.8 A238,0
ý=No nalsolution after 5000 iterations. t= Constitution Gardens Lake. Reflection liaiLý

Reflection Pool. oise ype7isels. J= Tidal Basin
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With the increased flexibility in selecting water pixels, this set of runs resulted

in primarily integer solutions. Since the border length has become less of a constraint,

the model can more easily select integer solutions. Overall, the pixels selected did

not change much from run to run. The biggest shift in selected pixels occurred

between run 10 (9/1) and the last (1.0/0) run. In next paragraph, a final set of runs

are made with z. border of less than or equal 196.

Border Length < 196 In this final set of runs, the border length

has been set to less than or equal 196. With this border length, the selected pixels

could all individual pixels in the image since this is above the maximum border

length for an area of 24 pixels.2" I would suspect that all of the solutions will be

integer. The results of my model with a maximize objective function, area of 24,

border length of less than for equal to 196, and varying lambda weights are shown

in Table 27.

In this final set of runs, all the solutions were integer except the tenth run

(9/1). I can not explain why the model did not pick the top 24 pixels to maximize

the combined objective function. With a border length of 196, the model is not

constrained by the border length. This is true since 196 is greater than the maximum

border length (192). The biggest surprise in these runs was the successful completion

of the first run (0/1.0). Most of the pixels selected by this run are non contiguous and

are not located in the water subregion areas. In fact only two pixels selected were

in areas previously associated with water. Pixel 264 was located in the Constitution

Lake area and pixel 666 was a water noise-type pixel near the Reflection Pool. For

this run the iteration count was 4799. This is high when compared to the rest of

this set of runs. All the other runs were bounded by a low of 2,388 iterations for the

fourth run (3/7) to a high of 3,075 for the last run (1.0/0).

"25Recall that the maximum border length for an area of 24 pixels is 192.
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Table 27. Results of Channel 1 - Channel 2 Runs; Border Length < 196
Selected GAMS Computer Runs: Channel I - 2 Combination
Pixels -fF8 -- T bclý !ýLeWMYMLasurecl inO thi)

671.6 1 ITT -7 ý14 4 713 1 8/2 1 911 1 1.010

32a X
37* X

122* X
142t X X X X X X
163t X X
184t -3F--- x X X X X X X X X
186o X
187o X
244t X X -x -x -X -x -x -X x
264t X X -X -X -X -X -X X

---- 342o X
522* X
5281 X X
529* X X X X X X X -X
542§ X X X X X X X X X X

1 547- X X
550* x X
5520 X
5550 X
557o
563o X
5670 X X X
568* X X X X X
570* -X X X X X
587* X X X X
588'9'--- -M X X X X X
89 -6'- X X ........... X X X
go 'r-- -X 5.5

594*
6060
608* X
610* X X X X X X X X 0.5
622§ X
628-r- X
650*
648* X
665* X
666* X
670o X
686* X X
696o X
6980 X
706* X X

--- 7!o* X
879* X
912o X
9180 X
9280 X
931o X
9340 X
935t -- 3= -- Y-
936 X X X X X X X XX - -- r-937 X X X X X X
9381 X X X X X X X X X X
939:

& uue

947o X
951 

X X X X X X

968 X X X X
974

Mb 3720.0 1 2618.2 125162 M

11 0 . Pixels located in nonwater areas. tzz Constitution Gardens Lake. = Reflection Pool.
Lincoln Reflection Pool. Noise Type Pixels. t= Tidal Basin.
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4.3.3.8 Varying Area and Border Length Programs In the previous com-

puter programs, the border length was allowed to vary in order to allow the model

more flexibility in selecting pixels. It was hoped that integer solutions would result,

but this was not always true. In this section, the area and border lengths are allowed

to vary. Once again, I am attempting to get all integer answers. In the first set of

runs, the area and border length are set less than a given value. In the next set of

runs, I use two area sizes and two border lengths. In this set of four runs, I attempt

to enforce contiguity by maximizing area and minimizing the border length. These

last sets of runs are shown in Table 28 below. In these runs, I have used the Channel

1-3 combination.

Table 28. Varying Area and Border Length Runs

Border Area Size ILength >!24 1 >- 26 11

_< 48 A,1 , 2  A1,,A2
_< 64 A1,A,2  A1 , A 2

Area < 28 d Border Length < 64 In this set of runs, I have allowed

the model to pick an area less than or equal to 28 pixels in size. The border length

is allowed to vary up to 64 in length. The results of this these runs will be split

over more than one area since the two largest bodies of water in the subimage are

24 and 26 pixels in size. The model has the flexibility to split over to areas since the

border length is sufficiently long enough. The results from these runs are shown in

Table 29.

In these runs, several interesting results occurred. The first noticeable result

is that all except the sixth run were integer solutions26 . I attribute this to the

2 6Note: Runs 0/1.0 and 1.0/0 were not run since one of the programs (5/5) was not integer. If
the solutions are not all integer, they can not be directly compared.
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Table 29. Results of Channel 1 - Channel 3 Runs; Area < 28, Border Length < 64
Selected GAMS Computer Runs: Channel 1 - 3 Combination
Pixels ILambda Weihts (Measured in Tenths )___

(-a)_ 1 /-01 11 - 28 1 L 4_6 5/5_ 6/4_ ___13__81

5978 XX X .4 X

548*X X X X 044 X X X
ale54.926.'33.v03.-68184 18. 10. 8.6 429 .

5T50rn* eeno u. $ osiuto adn ae =Rfeto olG 6W- = Linol RelcinPo.*=NieT ies ia ai

568* X X 129



model having enough flexibility to select those pixels which maximize the objective

function. The model is now required to pick the area and border length. The second

interesting result is related to this flexibility. All the runs had a 28-pixel size solution,

except the seventh run (6/4). In this run, the model chose an area of 24 pixels. In

all the solutions, the pixels selected were divided between the Reflection Pool and

the Tidal Basin.

Area > 24 & Border Length < 48 This set of runs begins the set

of four programs where the area and border length are both bounded by two sizes.

In the first set of runs, the area has be set greater than or equal to 24 and the border

length has been set less than or equal to 48. Given then parameters, I would expect

the model to select the Reflection Pool in total. Recall that the Reflection Pool had

an area of 24 and a border length of 44. The results for these runs are shown in

Table 30.

These set of runs had several significant results. The first, is that instead of

selecting the Reflection Pool in total, the model selected pixels from here and from

the Tidal Basin. However, the model was only able to select fractional pixels in the

Tidal Basin area. The second significant result is that the pixels selected stayed

nearly constant from run to run. A final observation about these runs is that the

total area for a run was also fractional. All of runs 1/9 to 8/1 had a total area of

24.75, but run 9/1 had an area of 24.75.

Area > 24 & Border Length < 64 In this set of runs, the area

remains set at greater than or equal to 24 and the border length has been changed

from less than or equal to 48 to less than or equal to 64. Given these parameters, I

would expect the solution to be more spread out due to the increased border length.

The results for these runs are shown in Table 31.

Contrary to what I predicted, the pixels selected were not spread. This problem

arose since the area size constraint was not maintained in runs 1/9 - 7/3. In these
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Table 30. Results of Channel 1 - Channel 3 Runs; Area > 24, Border Length < 48

Selected ZýAMS Computer Runs: Channel I - 3 Combination
pixels Lambdt Weights (Yeasuid injenýhs

071.6 1 179-T-278- 1 317 X .57,5 4 ý13 1 8/2 1 911 1 1.010

528* X X X X X X X X
529* X X X X X X X X
547* X X X X X X X X X X
548' -- x --- 3C- x X X X
5496---- -X X x x -x -x
5507'--- -K- -X -- 3F- X X
567ý- X X X X X -X X X X X
568* X -X x X X X X

I X X -- Y-.
569, X X X X -X X X
570* -X X X X X X X X X

-7--- X -- 3r- --- X- --- R- X X X
588* -X -- = -- K- X -X x X X
5896-- -7- --- Y- -- = x -- 3r- X --K-- X
5907,-- X X X X X X X X X X
6076'- X - - --- x- -X -- y-- X -r--
608* X X X X X X -X
609* X X X X X X X X X X
61uw-- -= X X X X X X X
627* X
628* X X X
6rgr,-- - -X -X X X X X X X X X
630w---- - -X X X
6484----
ý49*
686 0.483
706 0.483
935 1 0.25 672-5 0125 0.25 -- F.-25 0-25 0.25 0.25 0.375 0.069
9361 1 0.25 0.25 0.25 0.25 0.25 0.2S 0.25 0.25 0.375 0.069

0.37,
0. 37,937S 1 0.25 0.25 0.25 0.15 =2 -5 7r2 -5 - W. 2 -5 -- T532 -- 5 0.375 0.0695391 1 0.25 0.25 0.25 0.25 0.25 -6. 2 -5 - U. 2 -5 -- --Odr.. 2 -5 0.375 0.069

9391 1 0.25 0.25 0.25 0.25 0.25 0.25 OM 0*25 0.375 0.069
955 1 0.25 0.25 1 0.25 0.25 0.25 0.25 OM 0.25 0.375 0.069
9561 0.25 0.25 0.25 0.25 0 -5 IF2 -5 6". 2 -5 WO.72 5- 0.375 0.069
957t 1 0.25 0.25 0.25 0.25 --- 6.-25 0.25 -16=25-=25 -5.-375-- 0.069
958 1 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.375 0.069

J2 

0. 3,

0 0.25 0.25 0.25 0. Ts- 0.25 0.25 0.375 O.G69959 5-.25
9 5 0.25 .2' 0.25 0.25 0.25 0.25 0.25 0.25 0.375 0.069
9761 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.375 0.069

T-25 0. 25 0.25 0.25 5 0.25 0.25 0.375 0.0699771 1
2,978; 0.25 1 0.25 1 0.25 1 0.25 1 25 0. 2 Y- =3 -- 11 0.5.9

979; 1 0.115 1 0.25 1 0.25 1 0.25 1 0.25 1 O.a5 0.25 0.25 .375 0.069

ý.b V ue 1 2930 1 2195.3 1921.7 1 1657.8 1 1 3910 1 1 *3 1 866.5 1 602.8 1 339.7 1 90.0
e, 2930 3066 1 3088 1 3988 1 2 N3 1 2936 1 2980 1 3199

1 INo final solution after 5000 iterations. T= Constitution Gardens Lake. I = Reflection Pool.
Lincoln Reflection Pool. Noise Type Pixels. J= Tidal Basin.
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Table 31. Results of Channel 1 - Channel 3 Runs; Area > 24, Border Length 5 64

Selected GAMS Computer Runs: Channel 1 - 3 Combination
Pixels ILamd (Maue in Tenths) 1

9477 0.5 0X07 .5 08 .5 08 X X
978'X X X 0.0 X 08
599

567 Ob Vau I 051 I28. 372 I23. 73. 355 I17. 2. 2. 4.
Ite6ton 310 352 311 330 34 98 35 224 14

na9 so= Xto e 00aeaun.= Otttto res ae cbn ol
=70 Xno e ecanC.* ae xs s

587, X X132



runs, only a few pixels were fully allocated while the rest were fractional. These

answers are contrary to what one would expect given the extended border length.

For these seven runs, neither the resource limit nor the iteration limit was reached.

In fact, the iteration limit ranged from 2,985 (6/4) to 3,529 (2/8). More insight is

required into the inner workings of GAMS to determine what caused these solutions

below 24 pixels in size.

Area > 26 &d Border Length < 48 In this set of runs, the area

changes to greater than or equal to 26 and the border length has been changed to

less than or equal to 48. Given these parameters, I would expect the solution to

be infeasible. I expect this type of answer due to the relative short border length

when compared to the size of the area. When the runs were made, this is just what

happened. All the runs resulted in infeasible solutions.

Area > 26 &d Border Length < 64 In this set of runs, the area

remains set at greater than or equal to 26 and the border length has been changed

to less than or equal to 64. Given these parameters, I would expect the solution to

be the region of 26 pixels in the Tidal Basin area. This group of 26 pixels have a

border length of 60. The results for these runs are shown in Table 32.

Contrary to what I hypothesized, the Tidal Basin pixels were not chosen ex-

clusively. Rather, the pixels selected were chosen from the Reflection Pool and the

Tidal Basin Area. Another significant result was that the pixels selected in the

Tidal Basin were noninteger. Once again the inner workings of GAMS are coming

into play. The GAMS software is attempting to maximize the objective fuction by

taking partial pixels rather than whole pixels.

Conclusion In these runs of varying area and border length, the

model appears to not be taking advantage of the relaxed constraints (See Tables 30-

32). Instead of integer answers, the model is only giving partial integer answers.
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Table 32. Results of Channel I - Channel 3 Runs; Area > 26, Border Length < 64
Selected GAMS Computer Ruw: Channel I - 3 Combination
Pix:ls Lamy& gghtA (!ý;suVd ýýTenihs) 11
(z, ) 1 0/1.0 1 119 1 2/8 1 317 7/3 1 8/2 1 !/1 1 1.010 if

528* x x x x x x x I X-
................ 53-9-'ý x x x x x x x x

54?r'-- x x -5r-- x x
548* x x
549* x x x x x x x x x
55011- x x
567* T- x
5r8w- --- x- -- T- -- 5r- -x x X--
569- x x x x x X.- x x570' x x x

-- 3r-
587' x x
588, x x x x x x
589* x x x x
590, x
607* x
608* x x x
609, x x x
610* -- T- x x
6271- x x
628w- x x
629w- 

......... . ..........

630' x
6487-- x
649-
686* x
706*
8?9* x
935t 0.750 .750 0.750 0.750 0.750 0.750 -- 0-.750
9361 0.750 0.750 0.750 0.750 -- d-7-50 0.750 0.750
9371 0.750 0.750 0.750 0.750 0.750 0.750 0.750 x x
9381 075-0 -- U. 75-0 0.750 0.750 '--5-.750 0.750 -7. 75-0 --- R-
939 0.750 0.750 0.750 0.750 0.750 0.750 0.750 1 X
95S 0.750 0.750 0,750 0.750 7 ý5O 0.750_ 0.750 x x
956t 1 0.750 0.750 0.750 6.750 0.750 0.750 0.750 x x
957: 1 0.750 0.750_ 0.750 0.750 0.750 0.750 0.750 x
958 1 0.750 0.750 0.750 -- 6-.750 -- F-750 0.750 0.750 -- Y--
95 O.TSO 0.750 0.750 0.750 0.750 0.750 0.750 x x
9T5 0.750 0.750 0.750 -3.750 .750 .750 750

OýZ ýO 1.7.10 -0-750 0.750 0.750 x
7.,6 

0!;50
N;j I 204R50 50 1 0.750 0.750 0.750 0.750 1 x
9781 1 0.750 1 0. T50 0.750 1 0.750 0.750 2 1 x I x

0! 7Z,ýO 
0.750

0.750 1 0.750 0.750 1 0.750 0.750 55 0.750 x I x

I Obj Value 3122.6 1 2787.0 1 2451.3 1 2115.7 1760.0 1444.4 1108.7 693.2 1 429.6 1ý1218.0
1 rations 2890 1 2851 1 2704 1 3177 3016 2786 2943 4410 1 1924 1
jWo Kn&l 5A0 uti on after 5000 iterations. T= Constitution Uardens Lake. Reflection Pool.

Lincoln Reflection Pool. Noise Type Pixels. S= Tidal Basin.
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It is significant to note that all the computer runs that resulted in answers did not

exceed the iteration fimit, resource limit, branch and bound node limit, or the work

space limit. With no error messages in these runs, I was at a loss for how to explain

these results. I next called the GAMS Development Corporation for a technical

explanation. According to Erwin Kalvelagen, there is no problem with the model as

it is currently written. In fact, he ran the 1/9 program of Table 30 and the output

was integer. The integer solution was composed of the following pixels: 528-529,

547-550, 567-570, 587-590, 607-610, 627-630, and 648-649. The iteration count was

2,813 and the corresponding objective value was 2,253.2 (17). The 24 pixels selected

are the same pixels selected when I attempted to find the Reflection Pool with area

equal to 24 and border length equal to 44. The model has correctly maximized the

area while minimizing the bcrder length.

I had not arrived at this integer solution only because he used a different solver,

GAMS/OSL, rather than the one I was using, GAMS/ZOOM. The OSL solver is only

available on the 2.25 version of GAMS. The GAMS package installed at the Air Force

Institute of fechnology where I conducted my research only has Version 2.2 installed.

I also asked if I could solve these problems with the GAMS/ZOOM solver and why

I had noninteger solutions. He said that the GAMS/ZOOM solver was capable of

solving these problems, but I would need to raise the iteration count. The answer to

the second part of this question was more interesting. When GAMS/ZOOM is used

to solve a mixed integer program, it solves the problem in two steps. In the first step,

the problem is solved as an LP with the integer constraint relaxed. In the second

step, the solver uses this information to solve for the integer solution. After the model

has solved the first step, it looks to see if there is sufficient resources (iteration limit,

resource limit, branch and bound node limit, and the work space limit) to complete

the second step. The model uses the first step as an estimate for what resources are

required in the second step. If the resources are not sufficient, the program will stop

at this noninteger solution (17). The output does not tell the programmer that this
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condition has occurred, but rather says that the program has successfully completed

with a noninteger solution. This is a nuance of GAMS/ZOOM that I would not have

known unless I contacted the GAMS Development Corporation. Erwin stated that

this summary of successful program completion is confusing to the user and thus

they have changed it in Version 2.25 of GAMS. Given this new information, I again

ran the four sets of programs shown in Table 28. However, this time I changed the

iteration limit to 25,000.

4.3.3.9 Increased Iteration Limit Programs The four sets of programs

shown in Table 28 were rerun using an iteration limit of 25,000. The programs should

not need this much, but I have increased it to this level for insurance. Erwin said

the necessary iteration limit needed by GAMS/ZOOM should be about double the

iteration count in the noninteger solutions. If this is true, most of the programs

should successfully complete with integer solutions between 6,000 - 7,000 iterations.

Area > 24 & Border Length •_ 48 This set of runs begins the set

of four programs where the area and border length are both bounded by two sizes.

In the first set of runs, the area has be set greater than or equal to 24 and the border

length has been set less than or equal to 48. Given then parameters, I would expect

the model to select the Reflection Pool in total. Recall that the Reflection Pool had

an area of 24 and a border length of 44. The results for these runs are shown in

Table 33.

Table 33. Results of Channel 1 - Channel 3 Runs; Area > 24, Border Length < 48

Selected GAM C omputer Runs: Channel 1 - 3 Combination
Pixels Lambda Weihts Measured in Tenths
Lxk) I 0110 1 1/9 1 2/9 1 3/7 7I 7 I F'

Iteration sl 11852 122843 123259 123008 122771 123028 1122912 123042 1
O1 If nal solution. = o solution after running 4+ hours on the VAX.
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The results from these runs were not what I expected. The iteration counts

are nearly ten times those of the noninteger runs (See Table 30.) and the solutions

were noninteger, rather than integer. At first, one would suspect the program that I

wrote, but this is not the case. I sent my program to Erwin Kalvelagen via electronic

mail and he ran the 1/9 program with the GAMS/OSL solver. The results from this

run were what I expected - the Reflection Pool in total was selected by the model.

This solution was the one that I expected the model to find. The combined objective

value was 2,253.2 and this solution occurred after only 2,813 iterations (17). Since

the program ran correctly on the GAMS/OSL solver, I do not suspect the program

itself. Rather, I suspect this is another nuance of the GAMS/ZOOM solver that is

not published. When I called Erwin Kalvelagen for assistance, he offered another

possible explanation. He said it is possible that the relaxed LP (noninteger) solution

is way off from the integer solution. If this is true, the model will have to run more

than double the number of iterations required for a noninteger solution (17). A

portion of the output from the GAMS/OSL solver and the program itself is shown

in Appendix M.

Area > 24 & Border Length < 64 In this set of runs, the area

remains set at greater than or equal to 24 and the border length has been changed

from less than or equal to 48 to less than or equal to 64. Given these parameters, I

would expect the solution to be more spread out due to the increased border length.

The results for these runs are shown in Table 34.

In these set of runs, the pixels selected were from the Reflection Pool and the

Tidal Basin. The only exception to this statement is run number eleven (1.0/0). In

this run the selected pixels also came from the Constitution Gardens Lake and the

Noise-Type pixels. These answers are in line with what I hypothesized before the

runs. The reason why the pixels selected are not contiguous is that the border length

has been increased. With a longer border length, the model is given more flexibility

in selecting those pixels which will maximize the objective function. Notice in all
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Table 34. Results of Channel 1 - Channel 3 Runs; Area > 24, Border Length < 64

Selected GAMS Computer Runs: Channel 1 - 3 Combination
Pixels Lambda W~eights Me~asured iin Tenths

0/. 1__ 1/ 16/ 6 54 7/__82 T _11_ -7
264f t ____ 1.

529*

54 7 X X X -X X X -X X X
548* 5
549R - - - Y 5 - -X -X
550, X X X X x
597* ___ -X -X X X X -X . X -X X X

56-X X ~X* X *X~ x X X~ X
569* ~X T x T-'3- X -x X

5978 X X X 5r-X
979$ -- - X X X

a~~~~~~~ ue2 . 58625. 982186012. 061 2. 2. 4.
Ite on 12172 437 477 442 437 430 438 474 2236 1994 109

S 31 31 64 64 64 64 64 64 64H 09 Ae 4 64 31 31 3 30 31 31 2
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of the solutions, the model took advantage of this increased border length and used

the full limit of 64. However, the number of pixels selected varied from 24 to 31.

Area > 26 & Border Length < 48 In this set of runs, the area

changes to greater than or equal to 26 and the border length has been changed to

less than or equal to 48. Given these parameters, I would expect the solution to be

infeasible. I would expect this due to the relative short border length when compared

to the size of the area.

Rather than burning computer time to prove this hypothesis, it can be shown

that this solution is not possible with the given data set. Recall in the previous sec-

tion that this set of problems resulted in infeasible solutions. Adding more iterations

to these problems will not result in feasible integer solutions. If the equations for

calculating the border (Reference Chapter 3) are used, a minimum border length can

be calculated. Since a smaller area will usually result in a smaller border length, I

will assume an area of 26 pixels. With this area, the minimum border is 22. Recalling

that the border length is defined as twice the border, a border length of 44 results.

Several geometric representations of an area of 26 pixels with a border length of 44

are shown in Figure 35.

Figure 35. Geometric Shapes for Area = 26 and Border Length = 44

139



In Figure 35 all the subregions are composed of a main group of 24 pixels (6

x 4 matrix) with two adjacent pixels on the border of this main group. As long

as these two pixels stay together, they can be moved anywhere around the main

group border and the border length of 44 will be maintained. If these two pixels

are split, the border length increases to 48. They can be moved anywhere on the

border of the main group and the length will remain at 48 as long as the two pixels

remain separate. The model will attempt to find a geometric pattern of this sort

which maximizes the objective function. If the water subregions in Appendix G are

reviewed, no geometric patterns of this sort are present in the Channel 1 image.

Recall that Channel 1 acts as a filter for the Channel 3 data. The Reflection Pool

is the one water subregion that comes closest to this geometric pattern, but the

area and border length are not equal to 26 and 48, respectively27 . Given that the

necessary geometric pattern is not present in the image, the model will not be able

to find a feasible solution.

Area > 26 &1 Border Length < 64 In this set of runs, the area

remains set at greater than or equal to 26 and the border length has been changed

to less than or equal to 64. Given these parameters, I would expect the solution to

be the region of 26 pixels in the Tidal Basin area. This group of 26 pixels have a

border length of 60. The results for these runs are shown in Table 35.

Contrary to what I hypothesized about the solution, the pixels selected were

not exclusively from the Tidal Basin area. Rather, the model maximized the objec-

tive function by selecting pixels from the Reflection Pool, Noise-Type Pixels, and

the Tidal Basin. It is interesting to note that the size of the area selected varied

from 26 to 32 pixels, but the border length of 64 was maintained. Most of the so-

lutions were the same (same pixels selected) however, for runs 3/7, 5/5, and 1.0/0

the selected pixels were different. In the first run (0/1.0), the program quit after

"The area and border length for the Reflection Pool is 24 and 44, respectively.
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Table 35. Results of Channel 1 - Channel 3 Runs; Area > 26, Border Length < 64
Selected GAMS Computer Runs: Channel 1 - 3 Combination
Pixels Lambd& Wejhts (Measured in Tenths)
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12,172 iterations. This can be explained by the information supplied by the GAMS

Corporation. This program quit after solving the relaxed (noninteger) LP. The pro-

gram then looks ahead to see what resources are available for solving the restricted

(integer) LP. In this case, the program decided that it would need more than 12,828

iterations so it stopped at the relaxed solution.

Conclusion All of the results from the four sets of runs were fairly

predictable once the iteration limit had been raised sufficiently. The result of raising

the iteration limit is that all of the solutions were integer. The iteration count for

these integer solutions were approximately double that of the noninteger solutions.

The only exception to these statements is the computer runs with an area greater

than or equal to 24 and a border length less than or equal to 48. In these runs,

the iteration count was usually over 20,000. These unusually high iteration counts

also caused the computer time to increase significantly. These 20,000+ iteration

count runs took over four hours on the VAX while the others were usually under

45 minutes. Some of these lower iteration count runs ran in a few minutes. When

one of these high iteration count programs were run with a GAMS/OSL solver, an

integer solution resulted in under 2,500 iterations. Given that the program is correct,

there are two possible explanations for the noninteger solutions. The first is that

this is another nuance of GAMS/ZOOM that is unpublished. A second more likely

explanation is that the initial relaxed (noninteger) solution is way off from the integer

solution. If this is true, this could result in the high iteration count seen.

4.3.4 Vegetation Index Programs Another method of processing multispec-

tral imagery is to first combine the channels into a vegetation index before searching

for a particular spectral and spatial pattern. Recall from Chapter 2 that two vege-

tation indices were defined as follows:

VI = Near-IR - Red (68)
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NVI = Near-IR - Red (69)

Near-IR+ Red

In these equations, the VI stands for Vegetation Index and NVI stands for Normalized

Vegetation Index. The variables in the equations represent the gray value of a pixel in

the red and near-IR imaging bands. With SPOT imagery, the red band corresponds

to Channel 2 and the near-IR band corresponds to Channel 3. By implementing

these equations, two bands of imagery are combined before processing occurs. In

general both indices result in high values for vegetation areas due to their relatively

high near-IR reflectance and low red reflectance. In contrast, clouds, water, and snow

have negative values due to their larger visible reflectance than near-IR reflectance.

Rock and bare soil have similar reflectance values in both bands so their index is

close to zero (21:598).

With this knowledge about the indices, the image analyst knows to look for

negative pixel values if he is looking for water regions. In Appendix L, I have

combined SPOT Channels 2 and 3 using the VI and NVI equations.2" This merging

of the data was accomplished by running a FORTRAN program I created for this

purpose. The output of the program will be used in an unweighted objective function

since there is only one channel of data. Using the water regions identified by the

three-channel filter (Appendix I), the combined data can be examined for negative

values in these areas. A review of this data failed to show any negative pixel values

in the four major water suibregions. Two individual noise-type water pixels did have

a negative values. This result was true for both sets of data and is shown graphically

in Appendix L.

Another method to combine multispectral imagery is a ratio of the near-IR and

red bands. This ratio is applicable to SPOT, Landsat TM and MSS, and NOAA

AVHRR imagery (12:87-88). This ratio equation is given below.

2SThe FORTRAN program created to merge the two channels is also included in Appendix L.
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GVRatio = GVNedr-IR (70)

GVR~d

In this equation, GVRatio is the ratioed gray value, GVNear-IR is the pixel gray value

in the near-IR band, and GVRed is the pixel gray value in the red band. Another

FORTRAN program was used to perform the ratio of the two channels. The results

of this program and the program code are included in Appendix L. In general, water

is identified by ratios less than one (23:189-191). The same examination of the

data, as performed on the vegetation indices, was performed on this ratioed data.

Again only two individual noise-type water pixels were found in the water subregions

identified in Appendix I.

Since none of the three methods for combining two channels of imagery worked,

it is necessary to analyze why this occurred. There are several factors that contribute

to this problem. The first factor to consider is the VI and NVI indices. Both of

these indices were created for analysis of NOAA AVHRR imagery. While the NOAA

AVHRR and the SPOT satellite both have a red and near-IR imaging band, they

differ in size. For the AVHRR, the red band is measured from 0.58-0.68 pm, while

the near-IR is measured from 0.725 - 1.10 pm (34:36). The SPOT satellite's red

band is measured from 0.61-0.68 pm, while the near-IR is measured from 0.79-

0.89 pm (21:582). Given these differences, several statements can be made. Since

the red bands are approximately the same, the gray values for a red image will be

similar, but slightly different. Secondly, since the near-IR bands are different, the

gray values should be noticeably different. If the gray values are different, the ratios

produced by the VI and NVI will be different for the NOAA AVHRR and SPOT

systems. Without actual imagery from both systems, it is difficult to tell how great

this difference is. However, it seems likely that this difference would be a significant

factor in the vegetation indices not working for the SPOT imagery.

A second factor why neither the vegetation indices nor the band ratio worked

on the SPOT data is the preprocessing that has occurred on the imagery. In Sec-
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tion 4.2.1 a summary of this preprocessing was given. Final processing of the SPOT

imagery by the EROS Data Center included a multipoint linear stretch. To under-

stand how this stretch can affect the gray values in the image, it is necessary to

look at the spectral reflectance curves for the four themes (grassy vegetation, water,

roads, and pathways) in the image and also explain the concept of a multipoint linear

stretch. In Figure 36 the spectral reflectance curves for the four themes are shown.
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Figure 36. Land Cover Reflectance Curves for SPOT Subimage (9:3-101), (15:159),
(30:85)

A review of Figure 36 shows that rock and asphalt have similar spectral sig-

natures both in the SPOT red and near-IR bands. In the red band, there is little

distinction between all the four themes, but in the near-IR band the four themes

are separated to a greater extent. If the gray values in the image followed these

curves, the near-IR band would distinguish the four themes when using the vegeta-

tion indices and band ratioing. In fact, Channel 3 should have done the best job

(not Channel 1) in the single band analysis. Since the image data did not allow the

water subregions to be resolved, the gray values must have been altered from these
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curves. The multipoint linear stretch may be the key to how the reflectance curves

were altered.

In general, sensor data rarely extends over the entire range of gray levels of

recording devices. For this reason, contrast stretching is used to "expand the narrow

range of brightness values typically present in an input image over a wider range of

gray values" (21:627). The result of this stretching is an output image in which the

contrast between features of interest have been accentuated. To explain the concept

of a multipoint linear stretch, it is necessary to consider a hypothetical example,

beginning with a simple linear stretch. Consider an imaging system that is capable

of recording at 256 gray levels. Figure 37 shows the histogram of a scene recorded

by this system in one channel.

60 t 185

Histogram 0 015 255 Image
I \ IValues

No Stretch Display
NSt- Levels

0 60 185 255

0 60 185 255 Image
_ _I Values

Linear Stretc Display

- I Levels
0 255

Figure 37. Principle of Linear Stretch Enhancement (21:631)

For this particular scene, the range of gray values is from 60-185. If no stretch

is applied to this data, this will also be the range of gray values seen on the output
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device29 . If a linear stretch is applied to the image data, the gray value range can be

uniformly increased to cover all 256 gray levels. From this figure, one can see that

each of the original gray values have been changed through this stretch process. If

this were the process applied to the SPOT imagery, it would have been fairly easily

to compute the original gray values. The equation for the mapping of the original

gray values into the linearly stretched gray values is given below (21:630-631):

DN' DN -MIN

DMAX -M-N) 255 (71)

where DN' = Digital number assigned to output pixel,

DN = Digital number assigned to original input pixel,

MIN = Minimum value of input image to be assigned value of 0,

MAX = Maximum value of input image to be assigned value of 256.

In the example given, the 60 level pixels would be mapped to 0 and the 185 level

pixels would be mapped to 256. While this method is useful for visually displaying

the image, application of vegetation indices may not be possible. This premise is

based on the fact that the gray values have been changed.

The problem of a linear stretch is further compounded by the multipoint linear

stretch. The principle of this enhancement process is shown in Figure 38. In this

figure, the original histogram has been divided into three intervals: 60-100, 100-150,

and 150-185. Each of these intervals are then stretched varying amounts. With this

method, the image analyst is able to apply the linear stretch in varying amounts to

enhance different portions of the histogram.

Once again this processing is very useful to the analyst who is visually examin-

ing the image. The analyst can apply a greater stretch where needed and less where

29This assumes the output device is capable of displaying 256 levels of gray.
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Figure 38. Principle of Multipoint Linear Stretch Enhancement

the contrast is already sufficient. This variance in the amount of stretching is shown

in Figure 38. The third interval (150-185) has been stretched the least while the

second interval (100-150) has been stretch the most. If the location of the intervals

and the stretch algorithms were known, the original gray values of the SPOT subim-

age could again be calculated and if the original gray values were known, then the

vegetation indices and band ratio should have been applicable. According to Glen

Kelly of the EROS Data Center, the original paperwork on the processing of this

particular SPOT image is no longer available. Without this information, one cannot

state conclusively how significant this is as a reason why the vegetation indices and

band ratio did not work.

When applying both vegetation indices, water is characteristically identified

by negative values. With the band ratio, water is identified by values less than one.

With the multipoint linear stretch, a hypothesis can be suggested as to why these

values did not result. For the correct values to appear, water is required to have gray
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values in the near-IR band that are less than the gray values in the red band. This

is the natural character of water as shown previously in Figure 36. If a multipoint

stretch was applied to the near-IR band, in such - manner that the gray values for

water were stretched above the red band gray values, then the existing problem is

possible. In contrast to this processed SPOT image, Landsat imagery is not allowed

to be processed (by the provider) with this type of enhancement. This is probably

due to the commercial interests, but it also avoids this sort of confusion (3).

One final factor that could contribute to this problem of distorted gray values

is the imaging conditions. These conditions include: the illumination angle/time of

day, moisture content of gravel and soil, and weather. The illumination angle/time

of day has a great effect on how water is recorded. If the sun's reflection is recorded

in the water areas, a specular reflection will occur. If the sun is not visible or the

imaging angle is such that the sun's reflection is not recorded then a more diffuse

reflection will occur. How the water subregions are recorded will greatly depend on

whether a specular or diffuse reflection is present. Moisture content can also have an

effect on gravel and soil. If the sun is at a low illumination angle and the moisture

content is high (i.e. dew on the ground), then higher than normal gray values can

result. Finally the weather also has an effect on the image. In addition to changing

the moisture content, clouds can filter the spectral response from the scene being

imaged. While the clouds may not cover the entire image, they can affect those areas

that are covered.

Since none of the three algebraic combinations resulted in the correct values

for water, I did not attempt to process the imagery further. If the data had been

raw SPOT data I would expect the correct values to appear in the water subregions

identified in Appendix I. Another possibility of finding the water subregions would

have been to create new algebraic combinations. Lack of time did not permit me to

attempt this possibility (and the uncertain nature of the pre-processing would leave

the results with limited utility).
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4.4 Conclusion

In reviewing the results of all the computer runs made in this chapter, several

observations are evident. I will first comment on the multiobjective programs and

then comment on the vegetation indices. In the multiobjective computer runs, Chan-

nel 1 was the critical channel in finding an optimal solution in a reasonable amount

of time.3" This statement is validated by the successful runs of Channel 1 alone,

Channels 1 and 2 together, and Channels 1 and 3 together. If Channel 1 is removed

from the image processing, spectral and spatial pattern recognition will not occur

in a timely manner. The results of these runs lead to an important conclusion for

the multiobjective function runs. The more spectrally distinct the target of interest

is, the quicker an optimal solution can be found. A thorough spectral analysis of

the image should tell the analyst if it is even worth running the program. Spectral

analysis on Channels 2 and 3 revealed that water was not spectrally distinct in these

channels. Since water was not distinct in these channels, the following runs were not

successful after 5,000 iterations: Channel 2 alone, Channel 3 alone, and Channels 2

and 3 together. The key to processing a channel in which the target is not spectrally

distinct is to combine this channel with one that is.

When the area and border constraints were set to 24 and 44 respectively, the

reflection pool was found no matter what the lambda weights were.31 The constraints

are sufficiently tight so that this is the only possible solution. Since the same 24 pixels

were chosen every time, the concept of an efficient frontier did not come into play. In

an effort to make the model choose different pixels, the border length was increased.

Since the B&W model is a multicriteria optimization problem in itself, changing

the border length is similar to changing the lambda weights. As the border length

constraint was increased, the number of non-contiguous pixels also increased. Recall

301 recheck ed the channel assignments, since the natural spectra suggest Channel 3 would best

distinguish water.
"31This statement does not apply to the following runs: Channel 2 alone, Channel 3 alone, and

Channels 2 and 3 together.
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that contiguity for a given pixel-size area is only enforced with border lengths near

the minimum. With the change in border length, different pixels were selected by

the model. Using the data collected from the border length = 192 runs, an efficient

frontier was plotted for all lambda weights, except 1.0/0. Another problem that

occurred was noninteger solutions. Up to this point, this had not occurred. It was

suspected that the model was being forced to locate geometric patterns that were

not present in the imagery. To see if this suspicion was true, another set of runs

were made where the border length was set to an inequality rather than an equality.

In these runs, the majority of the solutions were integer, but not all of them. In

fact, in the border length < 60 set of runs, the answers were primarily noninteger.

By allowing a range of acceptable border lengths, the model has more flexibility in

what pixels will be selected. This flexibility may have caused the increase in integer

answers. A direct consequence of this flexibility is that the number of iterations

required for a solution tended to increase to around 3,000.

The problem of noninteger solutions was mostly corrected by raising the it-

eration count. The reason why this is necessary is that the GAMS/ZOOM solver

solves the problems in two steps. In the first step, the problem is solved as a relaxed

(noninteger) LP. At this point the model stops and looks to see if there are sufficient

resources for the problem to be solved again. In this second step, the problem is

solved as an integer LP. The second step requires approximately the same amount of

resources as the noninteger LP. However, this did not always hold true. In the runs

with a area greater than or equal to 24 and a border length less than or equal to 48

the model did not give an integer solution after 20,000 plus iterations. It is suspected

that the initial roninteger solution is far off from the correct integer solution. For

this reason, the model will require significantly more resources than the noninteger

solution. With the completion of these runs, the next method of processing imagery

is considered.
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The vegetation index and band ratio methods were simple in nature to un-

derstand and calculate, but the lack of proper data prevented me from attempt-

ing spectral and spatial recognition with these image combinations. If raw data

were available, the probability of one of these combinations working should increase.

There were three possible answers for why the data were not amenable to processing

with these methods. The first possible reason is that the vegetation indices were de-

signed for the NOAA AVHRR system and not for the SPOT system. In my research

I did not find any vegetation indices developed uniquely for SPOT imagery. Since

this was the case, I had hoped to adapt these two indices to SPOT imagery. Another

contributing factor why the data was not useful is the preprocessing that occurred

on the imagery. One of the preprocessing techniques used was the multipoint linear

stretch. This technique has the potential to change the original gray values and thus,

invalidated the vegetation indices and band ratio. A final factor that could cause the

gray values to be out of the normal range is the imaging conditions. This is a catch

all factor that considers the following: illumination angle/time of day, moisture con-

tent of gravel and soil, and weather. All of these can affect the gray values that are

recorded for a scene. Once again, if the gray values change out of their characteristic

spectral ranges then the combination methods explained may not be valid.

Without any GAMS runs for these combinations, I was not able to compare the

two approaches for recognizing spectral and spatial patterns. This comparison could

be accomplished if raw data were available or if the algorithm for the multipoint linear

stretch were know. The latter would allow the given gray values to be remapped

back into the original gray values.
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V. Conclusions and Recommendations

The research accomplished in this thesis met the overall goal of developing a

general purpose model to recognize spectral and spatial patterns in digital imagery.

However, this model remains a research tool and is not an operational program that

can be used for imagery analysis on full-size images. In the following sections, the

successes as well as the work that still remains is called out.

5.1 Pattern Recognition Model

The B&W model was successfully modified into a tool that can be used to solve

relatively small spectral and spatial pattern recognition problems. The model was

successfully run with a combined three channel data set of 1,000 pixels.' If one is

going to use this model, it is assumed that the analyst has a priori information about

the target size and border length. In my analysis, it was shown that this knowledge

alone may not be enough to find the target on the first computer run. If the target

is not aligned with the pixel grid, the apparent target size and border length may

increase. For this reason, a range of areas and border lengths is the most efficient

manner to find a given target.

All the combined objective function solutions found by this model were com-

posed of water pixels from the four regions and the noise-type pixels2 . These noise-

type pixels were candidates for selection since they had the correct spectral pattern

identified for water. They were chosen at times when there was sufficient border

length available and when they maximized the objective function. To verify that the

solutions were indeed water, the solutions were checked against a map of the same

'It should be noted that each of the pixels have three gray values to correspond to the three
channels.

2 Note: When only Channel 2 was proccssed, some pixels were selected from nonwater areas (See
Table 27). There are two reasons why this occurred. The first is that Channel 1 was not present
to serve as a filter for the Channel 2 data. The second reason is that these nonwater pixels had a
gray value in the correct spectral range for water.
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area. The only water pixels that could not be found on the map were the noise-type

pixels. This high degree of accuracy was possible because on the spectral bounds

placed on the pixel selection.

The most important improvement to the B&W model was the addition of pixel

spectral bound constraints. Rather than just looking for the highest or lowest cost

pixels, the analyst can now set the pixel bounds for a specific target type. The

more channels available, the more spectral bound constraints that can be specified.

Each additional constraint serves as an additional filter for the imagery data. When

these spectral constraints are combined, a type of parallelepiped classifier results.

The model does not set the the spectral bounds for the targets to be located in the

image. Rather, the analyst must perform a spectral analysis of the given imagery

to determine the spectral range for the targets. If the spectral bounds are known

a priori, then this analysis is not needed. In general, additional channels are only

profitable if they help to reduce the feasible data set of pixels. If a given channel

is being considered for incorporation into the model, the above test can be applied

to see if it is beneficial to add the channel. When I combined Channels 1 and 3

together, the gain was marginal since only a few pixels were eliminated (Reference

Section 4.2.4.3). Since the number of feasible pixels were only slightly reduced, the

classification accuracy of using two channels was not significantly improved. For

the data set used in this thesis, classification accuracy is nearly the same with only

Channel 1 as compared to the Channel 1 - 3 combination. When the Channel 1

- 3 combination was used, only three water-noise-type pixels were eliminated from

selection (Reference Tables 34 and 35). While Channel 1 alone could have been used

to find water, this will not always hold true for other target types. In fact, this is

one of the purposes of multispectral imagery. For a given imaging band, two target

types may appear the same spectrally. In another band, one of these target types

may appear spectrally similar to a third target type. Thus, if only one imaging

band is used for analysis, the two spectrally similar targets will not be able to be
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distinguished. By using both channels with the two spectral bounds the target can

be distinguished from the others. In general, classification accuracy will improve

with additional channels.

Additional channels alone will not improve the pixel selection process. The

model's efficiency increases in direct proportion to the spectral distinctiveness of the

target. This conclusion was seen when Channels 2 and 3 were processed individually

and together. Since water was not distinct in these channels, the model aborted after

5,000 iterations. The spectral analysis of these channels showed that the feasible

water-spectral-range pixels nearly covered the entire image. Given that there was

hardly any reduction in the amount of data to be processed, it is not surprising

that the program aborted. It should be noted though that these channels were

successfully processed when combined with Channel 1. Channel 1 serves as a filter

to eliminate almost all of the pixels that were nonwater.

To further test the capabilities of this model, the border length was allowed

to vary while the area remained constant at 24. These runs were significant since

these were the first ones where noninteger solutions were encountered. Several sets

of runs were made, first with a set border length and then with a border length

range. In these runs, the lambda weights for each channel were also allowed to

vary. At first I suspected that the noninteger solutions were the result of the model

being forced to find geometric patterns that did not exist. However, the computer

runs with a border length range did not validate this premise. For some reason, the

border length is overriding the assignment of the Xik's (individual pixels) as a binary

variable. When the area and border constraints of 24 and 44 respectively were used

to find the Reflection Pool, this problem was never encountered.

The final test for the model was to run four sets of programs where the area

and border length were allowed to vary. In these runs, the selected pixels were not

always contiguous. This phenomena occurred at times because the border length

was long enough to allow more than one regions to be selected and because the
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pixels which maximized the objective function were not always contiguous. One of

these sets of runs did not converge to a integer solution as I had predicted. This is

probably the result of there not being sufficient resources for the program to run to

completion. Additional information on this phenomena is given in Section 5.2.

While the model currently works, its efficiency could be improved by refor-

mulating the model into a network with side constraints problem. Optimal integer

answers will be the rule (this is desired) and the computer processing time necessary

should decrease. I attempted to reformulate the model as such, but was unable to

proceed past Captain Reed's work. Integer solutions resulted for small problems,

but as the problem size increased, this did not hold true. Reed has completed an

entire thesis on this subject which offers a good starting point for this improvement.

His thesis is entitled, Binary Programming Models of Spatial Pattern Recognition:

Applications in Remote Sensing Image Analysis (26). In Appendix N, I have in-

cluded some of my work in formulating the model as a network with side constraints

problem.

Another improvement that remains to be implemented is the objective function

which is biased to pick the most representative pixels (based on gray value) of a

given target. Currently the model is biased to select pixels at the extremes of a

given spectral range. This improved objective function was developed in Chapter 3,

but was not implemented due to the incompatibility of the GAMS software. The

improved objective function needs to be reformulated or a new software package

selected that is compatible with this objective function.

5.2 Combining Single Channel Images

A successful method to combine single channel images in digital image pro-

cessing is the multicriteria optimization, weighted sums approach. This method was

used to successfully process Channel 1 individually and with Channel 2 or Channel

3. This success was due to the spectral distinctiveness of water in Channel 1. This
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method is another improvement that was added to the B&W model. As originally

designed, the B&W mode only had the capability to process one band of imagery

at a time. Although the maximum number of bands processed simultaneously was

only three, this method can be expanded to easily accommodate more channels.

This maximum of three bands was set by the amount of data available (three SPOT

multispectral channels) rather than a limitation of the improvement. This method

also allows the generation of an efficient frontier to find the nondominated solutions.

In running the model with this feature, the user needs to ensure that the

iteration limit is sufficient for an integer solution to result. If the model stops with a

noninteger solution before the iteration limit or any other resource limit is exceeded,

then the iteration limit needs to be increased. This nuance of GAMS/ZOOM is the

direct result of how it solves an integer LP. In the two-step process, the problem is

first solved as a relaxed (noninteger) LP. The model then stops at this point to see

if there are sufficient resources to resolve the model as an integer LP. If there is, it

continues on and solves for an integer solution. If not, it stops with the noninteger

solution. If the iteration count needs to be increased, it should be at least double

that of the count for the noninteger solution.

In digital imagery analysis, the weighting of the two channels can be used to

identify subtleties within a given land cover type. The weights themselves do not

help in contrasting the land cover type from the background. Rather, the spectral

bounds perform this function. Once all the feasible pixels have been identified, the

lambda weights can be used to select a particular type of water pixel. In Figure 39

the dots represent the pixels which fall within the Channel 1 and Channel 3 spectral

bounds for water (0 - 22 and 5 - 200, respectively). This parallelepiped classifier

is further divided into four quadrants. The use of the lambda weights will cause

the model to select pixels from certain quadrants if possible. Reviewing the possible

weights and their corresponding quadrants will better explain this concept.
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Figure 39. Parallelepiped Classifier For Water

If Channel 3 is given a weight of 1.0, the model will not care what the corre-

sponding gray value of Channel 1 is when selecting pixels to maximize the objective

function. As such, the model will attempt to select those pixels which are located

above the horizontal dashed line. If Channel 1 is given a weight of 1.0, a similar

selection occurs. In this case, the model does not care what the corresponding gray

values of the Channel 3 pixels are. In this case, the model.will attempt to select

pixels to the right of the vertical dashed line. In both examples, I have said the

model will attempt to select because there may not be enough pixels in one of the

quadrants to allow the model to exclusively selected from that quadrant.

As the lambda weights change from 0/1.0 for Channel l/Channel 3, the quad-

rants of emphasis change. For lambda weights 0/1.0 to .4/.6, the pixels in the upper

half of the parallelepiped classifier will have priority in being selected. With lambda

weights of .5/.5, both channels have equal priority in being selected. As such, pixels

in the upper right quadrant should have priority in being selected. The reason for
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the model selecting this quadrant is that both channels have maximum gray values

in this quadrant. When reviewing Tables 34 and 35, there is not much of a notice-

able change when the lambda weights change from .4/.6 to .5/.5. The reason why

there is not a noticeable change in the pixels selected is that the pixel gray values

for Channel 3 are so high when compared to Channel 1. Because of this difference

in gray values, the Channel 3 pixels will tend to dominate the selection process. As

the lambda weights change from .5/.5 to .9/.1, the pixels on the right of the vertical

dashed line should have priority in the selection process. When the the two refer-

enced tables are again reviewed, this change in pixel selection priority is not seen.

Once again the reason is because the Channel 3 pixels are dominating the selection

process. When the lambda weight changes from .9/.1 to 1.0/0, there is a noticeable

change in the pixels selected. This result occurred since the selection process is not

influenced by the high Channel 3 gray values.

In general, the image analyst can change the priority of the pixels selected

by changing the lambda weights. However, the effectiveness of this method greatly

depends on the target and its spectral characteristics. In the data set used for

this thesis, this method's utility was not fully realized since Channel 3 dominated

the selection process. If the spectral range for water in Channel 3 had been more

restrictive, this method of changing the selection priority would have been better

demonstrated. If an image analyst desires to change the selection priority to pixels

on the other side of the dashed lines, the objective function only needs to be changed

to a minimization objective function. If a minimization function is used, Channel 1

will dominate the selection process. However, this dominance will not be as great

when compared to Channel 3's dominance with a maximize objective function. This

concept is more clearly seen when the water spectral maximums and minimums are

recalled. For Channel 1, the water spectral range is 0 - 22, while for Channel 3, the

range is 5 - 200. Given these numbers, it is easy to see how a gray value of 200

dominates over 22, while the dominance of 0 over 5 is only slight. If the model was
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run with a minimize objective function, I would expect to see more changes in the

pixels selected as the lambda weights changcd.

The actual physical interpretation of what each of these quadrants represent

would require a larger data set and further analysis. Due to the relatively tight

spectral bounds for Channel 1, a partial interpretation can be made for this channel.

The pixels closest to 0 in gray value were most representative of water while pixels

close to 22 represented a transition from water to another land cover type. Due to

the wide spectral range for water in Channel 3, no similar statements could be made.

If the spectral range in Channel 3 had been tighter, I would have been able to make

a similar interpretation. Combining the interpretation of the two channels would

then allow one to place a physical interpretation on each of the four quadrants in

the parallelepiped classifier. In the next paragraph, an improvement for changing

the lambda weights is discussed.

In the GAMS implementation of the model, I had to manually change the

lambda weights and rerun each program. With an "ADBASE" type implementation

of this model, all the lambda weights will be automatically tested and the efficient

frontier identified.3 With the ADBASE implementation of the model, the analyst's

confidence level should rise in knowing that he or she has a nondominated solution.

5.3 Vegetation Indices and Band Ratio

For this part of the research, I was not able to proceed past the calculation

of the vegetation indices and the band ratio. There are three possible answers why

this occurred with the SPOT imagery. The first factor is that the vegetation indices

were specifically developed for the NOAA AVHRR system. Since the red and near-

IR imaging bands are not the same in both systems, different solutions would result

from the two types of imagery. A second and more significant factor that may have

'if the reader is unfamiliar with the ADBASE software, he or she should contact Dr. Yupo
Chan of the Operational Sciences Department at the Air Force Institute of Technology in Dayton,
OH.
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caused this problem is the preprocessing that occurred on the SPOT imagery. One of

the preprocessing techniques used was a multipoint linear stretch. This enhancement

technique alone may have caused this problem. A third factor that could cause the

gray values to be out of the normal range is the imaging conditions. This is a catch all

factor that considers the following: illumination angle/time of day, moisture content

of gravel and soil, and weather. All of these factors can affect the gray values that are

recorded for a scene. Once again, if the gray values change out of their characteristic

spectral ranges then the combination methods explained may not be valid.

I suspect that if raw (unprocessed) SPOT imagery was available, these methods

for combining two bands of imagery would work. The spectral response curves,

for land covers present in the SPOT image, show the basis for these combination

methods and interpretation. If raw imagery was not available, the original gray

values could still be computed if the algorithm for the multipoint linear stretch was

known.

5.4 Comparison of Processing Methods

Since I was not able to process the combined images created by the vegetation

indices, I was not able to compare which data set resulted in the most accurate

answer nor which method was the most computer execution time efficient. I would

suspect that the computer execution time would be the same since the number of

equations for each method should also be the same. As far as the accuracy of the

solution rendered from two different data sets, it is hard to say. The vegetation index

method combines th. channels geometrically while the weighted sums approach is

additive. Once again the data set with the most spectrally distinct target will be

the superior one.
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5.5 Creation of GAMS Programs

As the size of the image processing problem grows, so does the amount of data

needed in a GAMS prograiii. Anyone using this model should take advantage of the

FORTRAN programs I have created for this express purpose. The adjacency and

cost matrix each consisted of 1,000 lines of data.

5.6 Final Conclusion

This thesis effort successfully incorporated the spectral and spatial character-

.stics of targets into an pattern recognition model. In the past, most research has

focused on only using the spectral characteristics of a target to locate it in an image.

Research continues in this area as well as in the spatial pattern recognition area.

Few models today attempt to incorporate both the spectral and spatial patterns

in finding objects of interest. This thesis is a step forward in marrying these two

methods of finding targets in digital imagery.
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Appendix A. LINDO Computer Runs

In this appendix are contained four completed LINDO runs explained in Chap-

ter 3. The title of each run is designated with a six digit alpha numeric designation

to indicate the type of run being made. The first two digits indicate the number

of subregions to be found in the image. The next two digits indicates the size of

the first subregion and the last two digits indicates the size of the second subregion.

For example, the first LINDO run is designated S2-1-1. This title indicates that

there are two subregions to be found both with a area of one pixel. The complete

LINDO outputs were not included due to the the volume of output. However, I have

included the complete LINDO program for each programs so that the results can be

replicated.

A.1 LINDO S2-1-1, Run #1

Search for two subregions of sizes: one and one. Border lengths:
four and four.

MIN 11 X11 + 5 X21 + 6 X31 + 8 X41 + 13 X51 + 2 X61 + 5 X71 + X81
"+ X91 + 11 X12 + 5 X22 + 6 X32 + 8 X42 + 13 X52 + 2 X62 + 5 X72 + X82
"+ X92

SUBJECT TO
2) X11 + X21 + X31 + X41 + X51 + X61 + X71 + X81 + X91 = 1
3) X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 + X92 = 1
4) X11 - X21 - P121 + N121 = 0
5) X11 - X41 - P141 + N141 = 0
6) - X11 + X21 - P211 + N211 = 0
7) X21 - X51 - P251 + N251 = 0
8) X21 - X31 - P231 + N231 = 0
9) - X + X31 - P321 + N321 = 0

10) X31 X61 - P361 + N361 = 0
11) - X11 + X41 - P411 + N411 = 0
12) X41 - X51 - P451 + N451 = 0
13) X41 - X71 - P471 + N471 = 0
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14) - X21 + X51 - P521 + N521 = 0
15) - X41 + X51 - P541 + N541 = 0
16) X51 - X61 - P561 + N561 = 0
17) X51 - X81 - P581 + N581 = 0

18) - X31 + X61 - P631 + N631 = 0

19) - X51 + X61 - P651 + N651 = 0
20) X61 - X91 - P691 + N691 = 0

21) - X41 + X71 - P741 + N741 = 0
22) X71 - X81 - P781 + N781 = 0
23) - X71 + X81 - P871 + N871 = 0
24) - X51 + X81 - P851 + N851 = 0
25) X81 - X91 - P891 + N891 = 0
26) - X61 + X91 - P961 + N961 = 0

27) - X81 + X91 - P981 + N981 = 0
28) X12 - X22 - P122 + N122 = 0
29) X12 - X42 - P142 + N142 = 0

30) - X12 + X22 - P212 + N212 = 0
31) X22 - X52 - P252 + N252 = 0

32) X22 - X32 - P232 + N232 = 0
33) - X22 + X32 - P322 + N322 = 0
34) X32 - X62 - P362 + N362 = 0

35) - X12 + X42 - P412 + N412 = 0

36) X42 - X52 - P452 + N452 = 0
37) X42 - X72 - P472 + N472 = 0

38) - X22 + X52 - P522 + N522 = 0
39) - X42 + X52 - P542 + N542 = 0

40) X52 - X62 - P562 + N562 = 0
41) X52 - X82 - P582 + N582 = 0

42) - X32 + X62 - P632 + N632 = 0
43) - X52 + X62 - P652 + N652 = 0
44) X62 - X92 - P692 + N692 = 0
45) - X42 + X72 - P742 + N742 = 0

46) X72 - X82 - P782 + N782 = 0
47) - X72 + X82 - P872 + N872 = 0

48) - X52 + X82 - P852 + N852 = 0
49) X82 - X92 - P892 + N892 = 0
50) - X62 + X92 - P962 + N962 = 0
51) - X82 + X92 - P982 + N982 = 0

52) P121 + N121 + P141 + N141 + P211 + N211 + P251 + N251 + P231

"+ N231 + P321 + N321 + P361 + N361 + P411 + N411 + P451 + N451 + P471

+ N471 + P521 + N521 + P541 + N541 + P561 + N561 + P581 + N581 + P631

"4 N631 + P651 + N651 + P691 + N691 + P741 + N741 + P781 + N781 + P871
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+ N871 + P851 + N851 + P891 + N891 + P961 + N961 + P981 + N981

= 4
53) P122 + N122 + P142 + N142 + P212 + N212 + P252 + N252 + P232

"+ N232 + P322 + N322 + P362 + N362 + P412 + N412 + P452 + N452 + P472

"+ N472 + P522 + N522 + P542 + N542 + P562 + N562 + P582 + N582 + P632

"+ N632 + P652 + N652 + P692 + N692 + P742 + N742 + P782 + N782 + P872

"+ N872 + P852 + N852 + P892 + N892 + P962 + N962 + P982 + N982

= 4
54) Xll + X12 <= 1

55) X21 + X22 <= 1

56) X31 + X32 <= 1

57) X41 + X42 <= 1

58) X51 + X52 <= 1

59) X61 + X62 <= 1

60) X71 + X72 <= 1

61) X81 + X82 <= 1

62) X91 + X92 <= 1

END
INTE 114

OBJECTIVE FUNCTION VALUE

1) 6.0000000

VARIABLE VALUE REDUCED COST
xll .000000 11.000000
X21 .000000 5.000000
X31 .000000 6.000000

X41 .000000 8.000000
X51 .000000 13.000000
X61 .000000 2.000000

X71 1.000000 5.000000
X81 .000000 1.000000

X91 .000000 1.000000
X12 .000000 11.000000

X22 .000000 5.000000
X32 .000000 6.000000

X42 .000000 8.000000

X52 .000000 13.000000

X62 .000000 2.000000
X72 .000000 5.000000
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X82 .000000 1.000000
X92 1.000000 1.000000

P121 .000000 .000000
V121 .000000 .000000
P141 .000000 .000000
N141 .000000 .000000
P211 .000000 .000000
N211 .000000 .000000
P251 .000000 .000000
N251 .000000 .000000
P231 .000000 .000000
N231 .000000 .000000
P321 .000000 .000000
N321 .000000 .000000
P361 .000000 .000000
N361 .000000 .000000
P411 .000000 .000000
N411 .000000 .000000
P451 .000000 .000000
N451 .000000 .000000
P471 .000000 .000000
N471 1.000000 .000000
P521 .000000 .000000
N521 .000000 .000000
P541 .000000 .000000
N541 .000000 .000000
P561 .000000 .000000
N561 .000000 .000000
P581 .000000 .000000
N581 .000000 .000000
P631 .000000 .000000
N631 .000000 .000000
P651 .000000 .000000
N651 .000000 .000000
P691 .000000 .000000
N691 .000000 .000000
P741 1.000000 .000000
N741 .000000 .000000
P781 1.000000 .000000
N781 .000000 .000000
P871 .000000 .000000
N871 1.000000 .000000
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P851 .000000 .000000
N851 .000000 .000000
P891 .000000 .000000
N891 .000000 .000000
P961 .000000 .000000
N961 .000000 .000000
P981 .000000 .000000
N981 .000000 .000000
P122 .000000 .000000
N122 .000000 .000000
P142 .000000 .000000
N142 .000000 .000000
P212 .000000 .000000
N212 .000000 .000000
P252 .000000 .000000
N252 .000000 .000000
P232 .000000 .000000
N232 .000000 .000000
P322 .000000 .000000
N322 .000000 .000000
P362 .000000 .000000
N362 .000000 .000000
P412 .000000 .000000
N412 .000000 .000000
P452 .000000 .000000
N452 .000000 .000000
P472 .000000 .000000
N472 .000000 .000000
P522 .000000 .000000
N522 .000000 .000000
P542 .000000 .000000
N542 .000000 .000000
P562 .000000 .000000
N562 .000000 .000000
P582 .000000 .000000
N582 .000000 .000000
P632 .000000 .000000
N632 .000000 .000000
P652 .000000 .000000
N652 .000000 .000000
P692 .000000 .000000
N692 1.000000 .000000
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P742 .000000 .000000
N742 .000000 .000000
P782 .000000 .000000
N782 .000000 .000000
P872 .000000 .000000
N872 .000000 .000000
P852 .000000 .000000
N852 .000000 .000000
P892 .000000 .000000
N892 1.000000 .000000
P962 1.000000 .000000
N962 .000000 .000000
P982 1.000000 .000000
N982 .000000 .000000

NO. ITERATIONS= 289
BRANCHES= 6 DETERM.= 1.000E 0
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A.2 LINDO S2-1-1, Run #2

Search for two subregions of sizes: one and one. Border lengths:
three and two.

MIN 11 X11 + 5 X21 + 6 X31 + 8 X41 + 13 X51 + 2 X61 + 5 X71 + X81
"+ X91 + 11 X12 + 5 X22 + 6 X32 + 8 X42 + 13 X52 + 2 X62 + 5 X72 + X82
"+ X92

SUBJECT TO
! Size constraint for the two subregions.
2) X11 + X21 + X31 + X41 + X51 + X61 + X71 + X81 + X91 = 1
3) X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 + X92 = 1
! Contiguity constraint.
4) X11 - X21 - P121 + N121 = 0
5) X11 - X41 - P141 + N141 = 0
6) - X11 + X21 - P211 + N211 = 0
7) X21 - X51 - P251 + N251 = 0
8) X21 - X31 - P231 + N231 = 0
9) - X21 + X31 - P321 + N321 = 0

10) X31 - X61 - P361 + N361 = 0
11) - X11 + X41 - P411 + N411 = 0
12) X41 - X51 - P451 + N451 = 0
13) X41 - X71 - P471 + N471 = 0
14) - X21 + X51 - P521 + N521 = 0
15) - X41 + X51 - P541 + N541 = 0
16) X51 - X61 - P561 + N561 = 0
17) X51 - X81 - P581 + N581 = 0
18) - X31 + X61 - P631 + N631 = 0
19) - X51 + X61 - P651 + N651 = 0
20) X61 - X91 - P691 + N691 = 0
21) - X41 + X71 - P741 + N741 = 0
22) X71 - X81 - P781 + N781 = 0
23) - X71 + X81 - P871 + N871 = 0
24) - X51 + X81 - P851 + N851 = 0
25) X81 - X91 - P891 + N891 = 0
26) - X61 + X91 - P961 + N961 = 0
27) - X81 + X91 - P981 + N981 = 0
28) X12 - X22 - P122 + N122 = 0
29) X12 - X42 - P142 + N142 = 0
30) - X12 + X22 - P212 + N212 = 0
31) X22 - X52 - P252 + N252 = 0
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32) X22 - X32 - P232 + N232 = 0
33) - X22 + X32 - P322 + N322 = 0
34) X32 - X62 - P362 + N362 = 0

35) - X12 + X42 - P412 + N412 = 0
36) X42 - X52 - P452 + N452 = 0
37) X42 - X72 - P472 + N472 = 0
38) - X22 + X52 - P522 + N522 = 0

39) - X42 + X52 - P542 + N542 = 0
40) X52 - X62 - P562 + N562 = 0
41) X52 - X82 - P582 + N582 = 0
42) - X32 + X62 - P632 + N632 = 0

43) - X52 + X62 - P652 + N652 = 0
44) X62 - X92 - P692 + N692 = 0
45) - X42 + X72 - P742 + N742 = 0
46) X72 - X82 - P782 + N782 = 0
47) - X72 + X82 - P872 + N872 = 0
48) - X52 + X82 - P852 + N852 = 0
49) X82 - X92 - P892 + N892 = 0
50) - X62 + X92 - P962 + N962 = 0
51) - X82 + X92 - P982 + N982 = 0
! Border length constraints.
52) P121 + N121 + P141 + N141 + P211 + N211 + P251 + N251 + P231

"+ N231 + P321 + N321 + P361 + N361 + P411 + N411 + P451 + N451 + P471

"+ N471 + P521 + N521 + P541 + N541 + P561 + N561 + P581 + N581 + P631

"+ N631 + P651 + N651 + P691 + N691 + P741 + N741 + P781 + N781 + P871

"+ N871 + P851 + N851 + P891 + N891 + P961 + N961 + P981 + N981

- 3
53) P122 + N122 + P142 + N142 + P212 + N212 + P252 + N252 + P232

"+ N232 + P322 + N322 + P362 + N362 + P412 + N412 + P452 + N452 + P472

"+ N472 + P522 + N522 + P542 + N542 + P562 + N562 + P582 + N582 + P632

"+ N632 + P652 + N652 + P692 + N692 + P742 + N742 + P782 + N782 + P872

"÷ N872 + P852 + N852 + P892 + N892 + P962 + N962 + P982 + N982

= 2
Each pixel only assigned to one subregion.

54) x1l + x12 <= 1
55) x21 + x22 <= 1
56) x31 + x32 <= 1
57) x41 + x42 <= 1
58) x5l + x52 <= 1

59) x61 + x62 <= 1

60) x71 + x72 <= 1

61) x81 + x82 <= 1
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62) x91 + x92 <= 1

! All variables defined to be 0 or 1.
INTE 114

No output for this run.
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A.3 LINDO S2-1-1, Run #4

Search for two subregions of sizes: one and one. Border lengths:
six and eight.

MIN 11 X11 + 5 X21 + 6 X31 + 8 X41 + 13 X51 + 2 X61 + 5 X71 + X81
"+ X91 + 11 X12 + 5 X22 + 6 X32 + 8 X42 + 13 X52 + 2 X62 + 5 X72 + X82
"+ X92

SUBJECT TO
2) X11 + X21 + X31 + X41 + X51 + X61 + X71 + X81 + X91 = 1
3) X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 + X92 = 1
4) X11 - X21 - P121 + N121 = 0
5) X11 - X41 - P141 + N141 = 0
6) - X11 + X21 - P211 + N211 = 0
7) X21 - X51 - P251 + N251 = 0
8) X21 - X31 - P231 + N231 = 0
9) - X21 + X31 - P321 + N321 = 0

10) X31 - X61 - P361 + N361 = 0
11) - X11 + X41 - P411 + N411 = 0
12) X41 - X51 - P451 + N451 = 0
13) X41 - X71 - P471 + N471 = 0
14) - X21 + X51 - P521 + N521 = 0
15) - X41 + X51 - P541 + N541 = 0
16) X51 - X61 - P561 + N561 = 0
17) X51 - X81 - P581 + N581 = 0
18) - X31 + X61 - P631 + N631 = 0
19) - X51 + X61 - P651 + N651 = 0
20) X61 - X91 - P691 + N691 = 0
21) - X41 + X71 - P741 + N741 = 0
22) X71 - X81 - P781 + N781 = 0
23) - X71 + X81 - P871 + N871 = 0
24) - X51 + X81 - P851 + N851 = 0
25) X81 - X91 - P891 + N891 = 0
26) - X61 + X91 - P961 + N961 = 0
27) - X81 + X91 - P981 + N981 = 0
28) X12 - X22 - P122 + N122 = 0
29) X12 - X42 - P142 + N142 = 0
30) - X12 + X22 - P212 + N212 = 0
31) X22 - X52 - P252 + N252 = 0
32) X22 - X32 - P232 + N232 = 0
33) - X22 + X32 - P322 + N322 = 0
34) X32 - X62 - P362 + N362 = 0
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35) - X12 + X42 - P412 + N412 = 0

36) X42 - X52 - P452 + N452 = 0

37) X42 - X72 - P472 + N472 = 0

38) - X22 + X52 - P522 + N522 = 0

39) - X42 + X52 - P542 + N542 = 0

40) X52 - X62 - P562 + N562 = 0

41) X52 - X82 - P582 + N582 = 0

42) - X32 + X62 - P632 + N632 = 0

43) - X52 + X62 - P652 + N652 = 0

44) X62 - X92 - P692 + N692 = 0

45) - X42 + X72 - P742 + N742 = 0

46) X72 - X82 - P782 + N782 = 0

47) - X72 + X82 - P872 + N872 = 0

48) - X52 + X82 - P852 + N852 = 0

49) X82 - X92 - P892 + N892 = 0

50) - X62 + X92 - P962 + N962 = 0

51) - X82 + X92 - P982 + N982 = 0

52) P121 + N121 + P141 + N141 + P211 + N211 + P251 + N251 + P231

"+ N231 + P321 + N321 + P361 + N361 + P411 + N411 + P451 + N451 + P471

"+ N471 + P521 + N521 + P541 + N541 + P561 + N561 + P581 + N581 + P631

"+ N631 + P651 + N651 + P691 + N691 + P741 + N741 + P781 + N781 + P871

"+ N871 + P851 + N851 + P891 + N891 + P961 + N961 + P981 + N981

- 6
53) P122 + N122 + P142 + N142 + P212 + N212 + P252 + N252 + P232

"+ N232 + P322 + N322 + P362 + N362 + P412 + N412 + P452 + N452 + P472

"+ N472 + P522 + N522 + P542 + N542 + P562 + N562 + P582 + N582 + P632

"+ N632 + P652 + N652 + P692 + N692 + P742 + N742 + P782 + N782 + P872

"+ N872 + P852 + N852 + P892 + N892 + P962 + N962 + P982 + N982

- 8
54) Xli + X12 <= 1

55) X21 + X22 <= 1

56) X31 + X32 <= 1

57) X41 + X42 <= 1

58) X51 + X52 <= 1

59) X61 + X62 <= 1

60) X71 + X72 <= 1

61) X81 + X82 <= 1

62) X91 + X92 <= 1

END
INTE 114

173



OBJECTIVE FUNCTION VALUE

1) 2.0000000

VARIABLE VALUE REDUCED COST
Xli .000000 11.000000
X21 .000000 5.000000

X31 .000000 6.000000
X41 .000000 8.000000
X51 .000000 13.000000

X61 .000000 2.000000
X71 .000000 5.000000

X81 1.000000 1.000000

X91 .000000 1.000000
X12 .000000 11.000000
X22 .000000 5.000000
X32 .000000 6.000000
X42 .000000 8.000000

X52 .000000 13.000000
X62 .000000 2.000000
X72 .000000 5.000000
X82 .000000 1.000000
X92 1.000000 1.000000

P121 .000000 .000000

N121 .000000 .000000
P141 .000000 .000000

N141 .000000 .000000
P211 .000000 .000000
N211 .000000 .000000

P251 .000000 .000000
N251 .000000 .000000

P231 .000000 .000000
N231 .000000 .000000

P321 .000000 .000000
N321 .000000 .000000
P361 .000000 .000000

N361 .000000 .000000

P411 .000000 .000000

N411 .000000 .000000

P451 .000000 .000000

N451 .000000 .000000

P471 .000000 .000000
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N471 .000000 .000000
P521 .000000 .000000

N521 .000000 .000000
P541 .000000 .000000
N541 .000000 .000000
P561 .000000 .000000
N561 .000000 .000000

P581 .000000 .000000
N581 1.000000 .000000
P631 .000000 .000000
N631 .000000 .000000

P651 .000000 .000000

N651 .000000 .000000
P691 .000000 .000000
N691 .000000 .000000
P741 .000000 .000000
N741 .000000 .000000
P781 .000000 .000000

N781 1.000000 .000000
P871 1.000000 .000000
N871 .000000 .000000
P851 1.000000 .000000

N851 .000000 .000000
P891 1.000000 .000000

N891 .000000 .000000
P961 .000000 .000000

N961 .000000 .000000
P981 .000000 .000000

N981 1.000000 .000000
P122 .000000 .000000
N122 .000000 .000000
P142 .000000 .000000

N142 .000000 .000000
P212 .000000 .000000

N212 .000000 .000000
P252 .000000 .000000

N252 .000000 .000000
P232 .000000 .000000

N232 .000000 .000000

P322 .000000 .000000

N322 .000000 .000000
P362 1.000000 .000000

175



N362 1.000000 .000000
P412 .000000 .000000
N412 .000000 .000000
P452 .000000 .000000
N452 .000000 .000000
P472 .000000 .000000
N472 .000000 .000000
P522 .000000 .000000
N522 .000000 .000000
P542 .000000 .000000
N542 .000000 .000000
P562 .000000 .000000
N562 .000000 .000000
P582 1.000000 .000000
N582 1.000000 .000000
P632 .000000 .000000
N632 .000000 .000000
P652 .000000 .000000
N652 .000000 .000000
P692 .000000 .000000
N692 1.000000 .000000
P742 .000000 .000000
N742 .000000 .000000
P782 .000000 .000000
N782 .000000 .000000
P872 .000000 .000000
N872 .000000 .000000
P852 .000000 .000000
N852 .000000 .000000
P892 .000000 .000000
N892 1.000000 .000000
P962 1.000000 .000000
N962 .000000 .000000
P982 1.000000 .000000
N982 .000000 .000000

NO. ITERATIONS= 105
BRANCHES= 1 DETERM.= 1.OOOE 0
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A.4 LINDO .32-1-1, Run #5

Search for two subregions of sizes: one and one. Border lengths:
four and six.

MIN 11 X11 + 5 X21 + 6 X31 + 8 X41 + 13 X51 + 2 X61 + 5 X71 + X81

"+ X91 + 11 X12 + 5 X22 + 6 X32 + 8 X42 + 13 X52 + 2 X62 + 5 X72 + X82

"+ X92

SUBJECT TO

2) X11 + X21 + X31 + X41 + X51 + X61 + X71 + X81 + X91 = 1

3) X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 + X92 = 1

4) X11 - X21 - P121 + N121 = 0
5) X11 - X41 - P141 + N141 = 0

6) - X11 + X21 - P211 + N211 = 0

7) X21 - X51 - P251 + N251 = 0
8) X21 - X31 - P231 + N231 = 0

9) - X21 + X31 - P321 + N321 = 0
10) X31 - X61 - P361 + N361 = 0
11) - X11 + X41 - P411 + N411 = 0

12) X41 - X51 - P451 + N451 = 0
13) X41 - X71 - P471 + N471 = 0
14) - X21 + X51 - P521 + N521 = 0
15) - X41 + X51 - P541 + N541 = 0

16) X51 - X61 - P561 + N561 = 0

17) X51 - X81 - P581 + N581 = 0
18) - X31 + X61 - P631 + N631 = 0

19) - X51 + X61 - P651 + N651 = 0

20) X61 - X91 - P691 + N691 = 0
21) - X41 + X71 - P741 + N741 = 0

22) X71 - X81 - P781 + N781 = 0
23) - X71 + X81 - P871 + N871 = 0
24) - X51 + X81 - P851 + N851 = 0

25) X81 - X91 - P891 + N891 = 0
26) - X61 + X91 - P961 + N961 = 0
27) - X81 + X91 - P981 + A981 = 0

28) X12 - X22 - P122 + N122 = 0
29) X12 - X42 - P142 + N142 = 0
30) - X12 + X22 - P212 + N212 = 0
31) X22 - X52 - P252 + N252 = 0
32) X22 - X32 - P232 + N232 = 0
33) - X22 + X32 - P322 + N322 = 0

34) X32 - X62 - P362 + N362 = 0
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35) - X12 + X42 - P412 + N412 = 0
36) X42 - X52 - P452 + N452 = 0
37) X42 - X72 - P472 + N472 = 0

38) - X22 + X52 - P522 + N522 = 0
39) - X42 + X52 - P542 + N542 = 0
40) X52 - X62 - P562 + N562 = 0
41) X52 - X82 - P582 + N582 = 0
42) - X32 + X62 - P632 + N632 = 0
43) - X52 + X62 - P652 + N652 = 0
44) X62 - X92 - P692 + N692 = 0

45) - X42 + X72 - P742 + N742 = 0
46) X72 - X82 - P782 + N782 = 0
47) - X72 + X82 - P872 + N872 = 0
48) - X52 + X82 - P852 + N852 = 0
49) X82 - X92 - P892 + N892 = 0
50) - X62 + X92 - P962 + N962 = 0
51) - X82 + X92 - P982 + N982 = 0

52) P121 + N121 + P141 + N141 + P211 + N211 + P251 + N251 + P231

"+ N231 + P321 + N321 + P361 + N361 + P411 + N411 + P451 + N451 + P471

"+ N471 + P521 + N521 + P541 + N541 + P561 + N561 + P581 + N581 + P631

"+ N631 + P651 + N651 + P691 + N691 + P741 + N741 + P781 + N781 + P871

"+ N871 + P851 + N851 + P891 + N891 + P961 + N961 + P981 + N981

= 4
53) P122 + N122 + P142 + N142 + P212 + N212 + P252 + N252 + P232

"+ N232 + P322 + N322 + P362 + N362 + P412 + N412 + P452 + N452 + P472

"4 N472 + P522 + N522 + P542 + N542 + P562 + N562 + P582 + N582 + P632

"4 N632 + P652 + N652 + P692 + N692 + P742 + N742 + P782 + N782 + P872

"4 N872 + P852 + N852 + P892 + N892 + P962 + N962 + P982 + N982

= 6
54) Xll + X12 <= 1

55) X21 + X22 <= 1

56) X31 + X32 <= 1

57) X41 + X42 <= 1

58) X51 + X52 <= 1

59) X61 + X62 <= 1

60) X71 + X72 <= 1

61) X81 + X82 <= 1

62) X91 + X92 <= 1

END
INTE 114
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OBJECTIVE FUNCTION VALUE

1) 2.0000000

VARIABLE VALUE REDUCED COST

Xli .000000 11.000000

X21 .000000 5.000000

X31 .000000 6.000000

X41 .000000 8.000000

X51 .000000 13.000000

X61 .000000 2.000000
X71 .000000 5.000000

X81 .000000 1.000000

X91 1.000000 1.000000

X12 .000000 11.000000

X22 .000000 5.000000

X32 .000000 6.000000

X42 .000000 8.000000

X52 .000000 13.000000

X62 .000000 2.000000

X72 .000000 5.000000

X82 1.000000 1.000000

X92 .000000 1.000000

P121 .000000 .000000

N121 .000000 .000000

P141 .000000 .000000

N141 .000000 .000000

P211 .000000 .000000

N211 .000000 .000000

P251 .000000 .000000

N251 .000000 .000000

P231 .000000 .000000

N231 .000000 .000000

P321 .000000 .000000

N321 .000000 .000000

P361 .000000 .000000

N361 .000000 .000000

P411 .000000 .000000

N411 .000000 .000000

P451 .000000 .000000

N451 .000000 .000000

P471 .000000 .000000
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N471 .000000 .000000

P521 .000000 .000000

N521 .000000 .000000

P541 .000000 .000000

N541 .000000 .000000
P561 .000000 .000000
N561 .000000 .000000

P581 .000000 .000000

N581 .000000 .000000

P631 .000000 .000000

N631 .000000 .000000

P651 .000000 .000000

N651 .000000 .000000

P691 .000000 .000000

N691 1.000000 .000000

P741 .000000 .000000

N741 .000000 .000000

P781 .000000 .000000
N781 .000000 .000000

P871 .000000 .000000

N871 .000000 .000000

P851 .000000 .000000
N851 .000000 .000000

P891 .000000 .000000

N891 1.000000 .000000
P961 1.000000 .000000

N961 .000000 .000000

P981 1.000000 .000000

N981 .000000 .000000

P122 .000000 .000000

N122 .000000 .000000

P142 .000000 .000000

N142 .000000 .000000

P212 .000000 .000000

N212 .000000 .000000

P252 .000000 .000000

N252 .000000 .000000

P232 .000000 .000000

N232 .000000 .000000

P322 .000000 .000000

N322 .000000 .000000

P362 .000000 .000000
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N362 .000000 .000000

P412 .000000 .000000

N412 .000000 .000000

P452 .000000 .000000
N452 .000000 .000000
P472 .000000 .000000

N472 .000000 .000000

P522 .000000 .000000
N522 .000000 .000000

P542 .000000 .000000

N542 .000000 .000000

P562 .000000 .000000

N562 .000000 .000000

P582 .000000 .000000

N582 1.000000 .000000
P632 .000000 .000000

N632 .000000 .000000

P652 .000000 .000000
N652 .000000 .000000
P692 .000000 .000000

N692 .000000 .000000
P742 .000000 .000000
N742 .000000 .000000

P782 .000000 .000000
N782 1.000000 .000000

P872 1.000000 .000000
N872 .000000 .000000
P852 1.000000 .000000

N852 .000000 .000000
P892 1.000000 .000000

N892 .000000 .000000
P962 .000000 .000000
N962 .000000 .000000

P982 .000000 .000000

N982 1.000000 .000000

NO. ITERATIONS= 88

BRANCHES= 1 DETERM.= 1.000E 0
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A.5 LINDO S2-1-1, Run #6

Search for two subregions of sizes: one and one. Border lengths:
eight and eight.

MIN 11X11 + 5 X21 + 6 X31 + 8 X41 + 13 X51 + 2 X61 + 5 X71 + X81
"+ X91 + 11 X12 + 5 X22 + 6 X32 + 8 X42 + 13 X52 + 2 X62 + 5 X72 + X82
"+ X92

SUBJECT TO
! Size constraint for the two subregions.
2) X11 + X21 + X31 + X41 + X51 + X61 + X71 + X81 + X91 = 1
3) X12 + X22 + X32 + X42 + X52 + X62 + X72 + X82 + X92 = 1
! Contiguity constraint.
4) X11 - X21 - P121 + N121 = 0
5) X11 - X41 - P141 + N141 = 0
6) - X11 + X21 - P211 + N211 = 0
7) X21 - X51 - P251 + N251 = 0
8) X21 - X31 - P231 + N231 = 0
9) - X21 + X31 - P321 + N321 = 0

10) X31 - X61 - P361 + N361 = 0
11) - X11 + X41 - P411 + N411 = 0
12) X41 - X51 - P451 + N451 = 0
13) X41 - X71 - P471 + N471 = 0
14) - X21 + X51 - P521 + N521 = 0
15) - X41 + X51 - P541 + N541 = 0
16) X51 - X61 - P561 + N561 = 0
17) X51 - X81 - P581 + N581 = 0
18) - X31 + X61 - P631 + N631 = 0
19) - X51 + X61 - P651 + N651 = 0
20) X61 - X91 - P691 + N691 = 0
21) - X41 + X71 - P741 + N741 = 0
22) X71 - X81 - P781 + N781 = 0
23) - X71 + X81 - P871 + N871 = 0
24) - XS1 + X81 - P851 + N851 = 0
25) X81 - X91 - P891 + N891 = 0
26) - X61 + X91 - P961 + N961 = 0
27) - X81 + X91 - P981 + N981 = 0
28) X12 - X22 - P122 + N122 = 0
29) X12 - X42 - P142 + N142 = 0
30) - X12 + X22 - P212 + N212 = 0
31) X22 - X52 - P252 + N252 = 0
32) X22 - X32 - P232 + N232 = 0
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33) - X22 + X32 - P322 + N322 = 0
34) X32 - X62 - P362 + N362 = 0
35) - X12 + X42 - P412 + N412 = 0

36) X42 - X52 - P452 + N452 = 0

37) X42 - X72 - P472 + N472 = 0
38) - X22 + X52 - P522 + N522 = 0

39) - X42 + X52 - P542 + N542 = 0

40) X52 - X62 - P562 + N562 = 0

41) X52 - X82 - P582 + N582 = 0

42) - X32 + X62 - P632 + N632 = 0
43) - X52 + X62 - P652 + N652 = 0

44) X62 - X92 - P692 + N692 = 0

45) - X42 + X72 - P742 + N742 = 0

46) X72 - X82 - P782 + N782 = 0
47) - X72 + X82 - P872 + N872 = 0

48) - X52 + X82 - P852 + N852 = 0
49) X82 - X92 - P892 + N892 = 0
50) - X62 + X92 - P962 + N962 = 0
51) - X82 + X92 - P982 + N982 = 0

! Border length constraints.
52) P121 + N121 + P141 + N141 + P211 + N211 + P251 + N251 + P231

"+ N231 + P321 + N321 + P361 + N361 + P411 + N411 + P451 + N451 + P471

"+ N471 + P521 + N521 + P541 + N541 + P561 + N561 + P581 + N581 + P631

"+ N631 + P651 + N651 + P691 + N691 + P741 + N741 + P781 + N781 + P871

"+ N871 + P851 + N851 + P891 + N891 + P961 + N961 + P981 + N981

= 8
53) P122 + N122 + P142 + N142 + P212 + N212 + P252 + N252 + P232

+ N232 + P322 + N322 + P362 + N362 + P412 + N412 + P452 + N452 + P472

+ N472 + P522 + N522 + P542 + N542 + P562 + N562 + P582 + N582 + P632

+ N632 + P652 + N652 + P692 + N692 + P742 + N742 + P782 + N782 + P872

+ N872 + P852 + N852 + P892 + N892 + P962 + N962 + P982 + N982

= 8
Each pixel only assigned to one subregion.

54) xll + x12 <= 1

55) x21 + x22 <= 1

56) x31 + x32 <= 1

57) x41 4 x42 <= 1

58) x51 + x52 <= 1

59) x61 + x62 <= 1

60) x71 + x72 <= 1

61) x81 + x82 <= 1

62) x91 + x92 <- 1
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All variables defined to be 0 or 1.

INTE 114

LP OPTIMUM FOUND AT STEP 105
OBJECTIVE VALUE = 2.00000000

FIX ALL VARS.( 14) WITH RC > 1.00000

SET X81 TO >= 1 AT 1, BND= -2.000 TWIN= -2.000 118

NEW INTEGER SOLUTION OF 2.00000000 AT BRANCH 1 PIVOT 118

OBJECTIVE FUNCTION VALUE

1) 2.0000000

VARIABLE VALUE REDUCED COST
Xll .000000 10.000000
X21 .000000 4.000000
X31 .000000 5.000000
X41 .000000 7.000000

X51 .000000 12.000000

X61 .000000 1.000000
X71 .000000 4.000000
X81 1.000000 .000000

X91 .000000 .000000
X12 .000000 10.000000

X22 .000000 4.000000
X32 .000000 5.000000
X42 .000000 7.000000

X52 .000000 12.000000

X62 .000000 1.000000
X72 .000000 4.000000

X82 .000000 .000000
X92 1.000000 .000000

P121 .000000 .000000
N121 .000000 .000000

P141 .000000 .000000

N141 .000000 .000000
P211 .000000 .000000
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N . 0. .00

N211 .000000 .000000

P251 .000000 .000000

N251 .000000 .000000
P231 1.000000 .000000

N231 1.000000 .000000
P321 .000000 .000000

N321 .000000 .000000

P361 .000000 .000000

N361 .000000 .000000
P411 .000000 .000000

N411 .000000 .000000

P451 .000000 .000000

N451 .000000 .000000

P471 .000000 .000000

N471 .000000 .000000

P521 .000000 .000000

N521 .000000 .000000

P541 .000000 .000000

N541 .000000 .000000

P561 .000000 .000000
N561 .000000 .000000

P581 .000000 .000000
NP81 1.000000 .000000

P631 .000000 .000000

N631 .000000 .000000
P651 .000000 .000000

N651 .000000 .000000

P691 .000000 .000000

N691 .000000 .000000

P741 .000000 .000000
N741 .000000 .000000

P781 .000000 .000000

N781 1.000000 .000000
P871 1.000000 .000000

N871 .000000 .000000

P851 1.000000 .000000

N851 .000000 .000000

P891 1.000000 .000000
N891 .000000 .000000

P961 .000000 .000000

N961 .000000 .000000

P981 .000000 .000000
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N981 1.000000 .000000

P122 .000000 .000000

N122 .000000 .000000

P142 .000000 .000000

N142 .000000 .000000

P212 1.000000 .000000

N212 1.000000 .000000

P252 .000000 .000000

N252 .000000 .000000

P232 .000000 .000000

N232 .000000 .000000

P322 .000000 .000000

N322 .000000 .000000

P362 1.000000 .000000

N362 1.000000 .000000

P412 .000000 .000000

N412 .000000 .000000

P452 .000000 .000000

N452 .000000 .000000

P472 .000000 .000000

N472 .000000 .000000

P522 .000000 .000000

N522 .000000 .000000

P542 .000000 .000000

N542 .000000 .000000

9562 .000000 .000000

N562 .000000 .000000

P582 .000000 .000000

N582 .000000 .000000

P632 .000000 .000000

N632 .000000 .000000

P652 .000000 .000000.

N652 .000000 .000000

P692 .000000 .000000

N692 1.000000 .000000

P742 .000000 .000000

N742 .000000 .000000

P782 .000000 .000000

N782 .000000 .000000

P872 .000000 .000000

N872 .000000 .000000

P852 .000000 .000000
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N852 .000000 .000000
P892 .000000 .000000
N892 1.000000 .000000
P962 1.000000 .000000
N962 .000000 .000000
P982 1.000000 .000000
N982 .000000 .000000

NO. ITERATIONS= 118
BRANCHES= 1 DETERM.= 1.OOOE 0
BOUND ON OPTIMUM: 2.000000
DELETE X81 AT LEVEL 1
ENUMERATION COMPLETE. BRANCHES= 1 PIVOTS= 118

LAST INTEGER SOLUTION IS THE BEST FOUND
RE-INSTALLING BEST SOLUTION...
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Appendix B. GAMS Computer Runs With Image Frame

In this appendix are contained seven GAMS programs and outputs. The pro-

grmas are complete while the output is just a summary of the results. This reduction

in the output was necesssitated due to the lenthy nature of the CAMS output. The

same titling convention is used in this chapter as was used in Appendix A. Note a

complete listing of the CAMS output is possible by running the programs below.

B.1 GAMS S2-1-1, Run #1

This program is set to find two subregions both of one-pixel size. The border

length constraints have been set to eight and eight.

GAMS 2.20 VAX VMS 16-AUG-1992 16:55 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

I SETS
2 1 1*25/
3 K/ 1*2/
4 ALIAS(I,J)
5 SETS
6 ADJ(I,J) ADJACENCY MATRIX
7 /1.(2,6)
8 2.(1,3,7)
9 3.(2,4,8)

10 4.(3,5,9)
11 5.(4,10)
12 6.(1,7,11)
13 7.(2,6,8,12)
14 8.(3,7,9,13)
15 9.(4,8,10,14)
16 10.(5,9,15)
17 11.(6,12,16)
18 12.(7,11,13,17)
19 13.(8,12,14,18)
20 14.(9,13,15,19)
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21 15.(10,14,20)
22 16.(11,17,21)
23 17.(12,16,18,22)
24 18.(13,17,19,23)
25 19.(14,18,20,24)
26 20.(15,19,25)
27 21.(16,22)
28 22.(17,21,23)
29 23.(18,22,24)

30 24.(19,23,25)
31 25.(20,24)/
32
33 PARAMETERS
34 M(K) PIXEL SIZE OF KTH SUBREGION
35 /1 1, 2 1/
36
37 L(K) BORDER OF KTH SUBREGION
38 /1 8, 2 8/
39
40 C(I) COST OF EACH PIXEL
41 I 1 99, 2 99, 3 99, 4 99, 5 99
42 6 99, 7 11, 8 5, 9 6, 10 99
43 11 99, 12 8, 13 13, 14 2, 15 99
44 16 99, 17 5, 18 1, 19 1, 20 99
45 21 99, 22 99, 23 99, 24 99, 25 99/;

46
47 VARIABLES
48 Z TOTAL COST OF ACQUIRED PIXELS
49 X(I,K) BINARY VARIABLE
50 P(I,J,K) BINARY VARIABLE

51 N(I,J,K) BINARY VARIABLE
52
53 BINARY VARIABLES X,P,N;
54

GAMS 2.20 VAX VMS 16-AUG-1992 16:55 PAGE 2

GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 EQUATIONS
56 OBJ OBJECTIVE FUNCTION
57 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
58 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
59 C3(K) CONSTRAINT FOR BORDER LENGTH
60 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
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61 CS(I) CONSTRAINT FOR SUBREGIONS;
62
63 OBJ..
64 Z =E= SUM((I,K), C(I)*X(I,K));
65
66 CI(K)..
67 SUM(IX(I,K)) =E= M(K);
68
69 C2(I,J,K) $ADJ(I,J)..
70 X(I,K) - X(JK) - P(I,J,K) + N(I,J,K) =E= 0;

71
72 C3(K)..
73 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =E= L(K);
74
75 C4(I,J,K) $ADJ(I,J)..
76 P(IJ,K) + N(I,J,K) =L= i;
77
78 C5(I)..
79 SUM(K, X(I,K)) =L= 1;
80
81 MODEL SUBREGION /ALL/;
82
83 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;

84
85 SOLVE SUBREGION USING MIP MINIMIZING Z;

86
87 OPTION MIP=ZOOM;
88
89 DISPLAY X.L,P.L,N.L;
90

GAMS 2.20 VAX VMS 16-AUG-1992 17:00 PAGE 30

GENERAL ALGEBRAIC MODELING SYSTEM

EXECUTING

89 VARIABLE X.L BINARY VARIABLE

1 2

18 1.000
19 1.000

89 VARIABLE P.L BINARY VARIABLE
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1 2

18.13 1.000

18.17 1.000
18.19 1.000

18.23 1.000
19.14 1.000
19.18 1.000

19.20 1.000

19.24 1.000

89 VARIABLE N.L BINARY VARIABLE

1 2

13.18 1.000
14.19 1.000
17.18 1.000
18.19 1.000

19.18 1.000

20.19 1.000
23.18 1.000
24.19 1.000

**** FILE SUMMARY

INPUT GS092D: [JAMRINE]S25X5.GMS;4
OUTPUT GSO92D: [JAMRINE]S25XS.LIS;6

EXECUTION TIME = 2.000 SECONDS
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B.2 GAMS S2-1-3, Run #2

This program is set to find two subregions of size one and three. The border

length constraints have been set to eight and sixteen.

GAMS 2.20 VAX VMS 16-AUG-1992 20:11 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1 SETS
2 1/ 1*25/
3 K/ 1*2/
4 ALIAS(IJ)
5 SETS
6 ADJ(IJ) ADJACENCY MATRIX
7 /1.(2,6)
8 2.(1,3,7)
9 3.(2,4,8)

10 4.(3,5,9)
11 5.(4,10)
12 6.(1,7,11)
13 7.(2,6,8,12)
14 8.(3,7,9,13)
15 9.(4,8,10,14)
16 10.(5,9,15)
17 11.(6,12,16)
18 12.(7,11,13,17)
19 13.(8,12,14,18)
20 14.(9,13,15,19)
21 15.(10,14,20)
22 16.(11,17,21)
23 17.(12,16,18,22)
24 18.(13,17,19,23)
25 19.(14,18,20,24)
26 20.(15,19,25)
27 21.(16,22)
28 22.(17,21,23)
29 23.(18,22,24)
30 24.(19,23,25)
31 25.(20,24)/

32
33 PARAMETERS
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34 M(K) PIXEL SIZE OF KTH SUBREGION
35 /1 1, 2 3/
36
37 L(K) BORDER OF KTH SUBREGION
38 /1 8, 2 16/
39
40 C(I) COST OF EACH PIXEL
41 /1 99, 2 99, 3 99, 4 99, 5 99
42 6 99, 7 11, 8 5, 9 6, 10 99
43 11 99, 12 8, 13 13, 14 2, 15 99

44 16 99, 17 5, 18 1, 19 1, 20 99
45 21 99, 22 99, 23 99, 24 99, 25 99/;

46
47 VARIABLES

48 Z TOTAL COST OF ACQUIRED PIXELS
49 X(I,K) BINARY VARIABLE
so P(I,JK) BINARY VARIABLE
51 N(I,J,K) BINARY VARIABLE
52
53 BINARY VARIABLES X,P,N;

54
GAMS 2.20 VAX VMS 16-AUG-1992 20:11 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 EQUATIONS

56 OBJ OBJECTIVE FUNCTION
57 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
58 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
59 C3(K) CONSTRAINT FOR BORDER LENGTH
60 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
61 CS(I) CONSTRAINT FOR SUBREGIONS;
62

63 OBJ..
64 Z =E= SUM((I,K), C(I)*X(I,K));
65
66 CI(K)..
67 SUN(IX(I,K)) =E= M(K);
68
69 C2(I,J,K) $ADJ(I,J)..
70 X(I,K) - X(JK) - P(I,J,K) + N(I,J,K) =E= 0;
71

72 C3(K)..
73 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =E= L(K);
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74

75 C4(IJ,K) $ADJ(I,J)..
76 P(IJ,K) + N(I,J,K) =L= 1;

77

78 cs(I)..
79 SUM(K, X(IK)) =L= 1;
80
81 MODEL SUBREGION /ALL/;

82
83 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK 20000;

84
85 SOLVE SUBREGION USING MIP MINIMIZING Z;

86
87 OPTION MIP=ZOOM;
88
89 DISPLAY X.LP.L,N.L;
90

GAMS 2.20 VAX VMS 16-AUG-1992 20:16 PAGE 30

GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

89 VARIABLE X.L BINARY VARIABLE

1 2

14 1.000
17 1.000

18 1.000

19 1.000

89 VARIABLE P.L BINARY VARIABLE

1 2

14.9 1.000
14.13 1.000
14.15 1.000
14.19 1.000
17.12 1.000
17.16 1.000
17.22 1.000
18.13 1.000
18.23 1.000
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19.14 1.000
19.20 1.000
19.24 1.000

89 VARIABLE N.L BINARY VARIABLE

12

9 .14 1.000
12.17 1.000
13.14 1.000
13.18 1.000
14.19 1.000
15.14 1.000
16.17 1.000
19.14 1.000
20.19 1.000
22.17 1.000
23.18 1.000
24.19 1.000

**** FILE SUMMARY

INPUT GSO92D: [JAMRINE]S25X5I.GMS;1
OUTPUT GSD92D: [JAMRINE)S26XS1.LIS;1

EXECUTION TIME = 2.500 SECONDS
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B.3 GAMS S2-2-5, Run #3

This program is set to find two subregions of size two and five. The border

length constraints have been set to twelve and twenty four.

GAMS 2.20 VAX VMS 16-AUG-1992 20:16 PAGE

GENERAL ALGEBRAIC MODELING SYSTEM

COMPILATION

1 SETS
2 1 1*25/
3 K/ 1*2/
4 ALIAS(I,J)
5 SETS
6 ADJ(I,J) ADJACENCY MATRIX
7 /1.(2,6)
8 2.(1,3,7)

9 3.(2,4,8)

10 4.(3,5,9)
11 5.(4,10)

12 6.(1,7,11)
13 7.(2,6,8,12)

14 8.(3,7,9,13)
15 9.(4,8,10,14)
16 10.(5,9,15)

17 11.(6,12,16)
18 12.(7,11,13,17)

19 13.(8,12,14,18)
20 14.(9,13,15,19)

21 15.(10,14,20)
22 16.(11,17,21)

23 17.(12,16,18,22)
24 18.(13,17,19,23)

25 19.(14,18,20,24)
26 20.(15,19,25)

27 21.(16,22)
28 22.(17,21,23)
29 23.(18,22,24)
30 24.(19,23,25)

31 25.(20,24)/
32
33 PARAMETERS
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34 M(K) PIXEL SIZE OF KTH SUBREGION
35 /1 2, 2 5/
36
37 L(K) BORDER OF KTH SUBREGION

38 /1 12, 2 24/
39
40 C(I) COST OF EACH PIXEL
41 /1 99, 2 99, 3 99, 4 99, 5 99
42 6 99, 7 11, 8 5, 9 6, 10 99
43 11 99, 12 8, 13 13, 14 2, 15 99

44 16 99, 17 5, 18 1, 19 1, 20 99
45 21 99, 22 99, 23 99, 24 99, 25 99/;
46
47 VARIABLES
48 Z TOTAL COST OF ACQUIRED PIXELS
49 X(I,K) BINARY VARIABLE
50 P(I,JK) BINARY VARIABLE
51 N(I,JK) BINARY VARIABLE
52
53 BINARY VARIABLES X,P,N;
54

GAMS 2.20 VAX VMS 16-AUG-1992 20:16 PAGE 2

GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 EQUATIONS
56 OBJ OBJECTIVE FUNCTION
57 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
58 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
59 C3(K) CONSTRAINT FOR BORDER LENGTH
60 C4(IJ,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
61 C5(I) CONSTRAINT FOR SUBREGIONS;
62
63 OBJ..
64 Z =E= SUM((I,K), C(I)*X(I,K));
65
66 CI(K)..

67 SUM(I,X(I,K)) =E= M(K);
68
69 C2(I,J,K) $ADJ(I,J)..

70 X(I,K) - X(J,K) - P(I,J,K) + N(IJ,K) =E= 0;
71
72 C3(K)..
73 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =Em L(K)'

197



74

75 C4(I,J,K) $ADJ(IJ)..

76 P(I,J,K) + N(I,J,K) =L= 1;
77

78 C5(I)..

79 SUM(K, X(I,K)) =L= 1;
80

81 MODEL SUBREGION /ALL/;

82
83 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;

84
85 SOLVE SUBREGION USING MIP MINIMIZING Z;

86
87 OPTION MIP=ZOOM;
88
89 DISPLAY X.LP.L,N.L;

90

GAMS 2.20 VAX VMS 16-AUG-1992 20:22 PAGE 30

GENERAL ALGEBRAIC MODELING SYSTEM

EXECUTING

89 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000

9 1.000
12 1.000

14 1.000

17 1.000
18 1.000

19 1.000

89 VARIABLE P.L BINARY VARIABLE

1 2

8 .3 1.000
8 .7 1.000
8 .13 1.000
9 .4 1.000

9 .10 1.000
12.7 1.000
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12.11 1.000
12.13 1.000
14.13 1.000
14.15 1.000
17.16 1.000
17.18 1.000

17.22 1.000
18.13 1.000

18.17 1.000
18.23 1.000
19.20 1.000
19.24 1.000

89 VARIABLE N.L BINARY VARIABLE

1 2

3 .8 1.000
4 .9 1.000

7 .8 1.000
7 .12 1.000
10.9 1.000
11.12 1.000
13.8 1.000

13.12 1.000
13.14 1.000
13.18 1.000
15.14 1.000
16.17 1.000
17.18 1.000
GAMS 2.20 VAX VMS 16-AUG-1992 20:22 PAGE 31
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

89 VARIABLE N.L BINARY VARIABLE

1 2

18.17 1.000

20.19 1.000
22.17 1.000
23.18 1.000

24.19 1.000
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**** FILE SUMMARY

INPUT GSO92D:[JAMRINE]S25X52.GMS;1
OUTPUT GSO92D:[JAMRINE]S2RX52.LIS;1

EXECUTION TIME = 2.180 SECONDS
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B.4 GAMS S2-3-3, Run #4

This program is set to find two subregions of size three and three. The border

length constraints have been set to sixteen and sixteen.

GAMS 2.20 VAX VMS 16-AUG-1992 20:22 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1 SETS
2 1 1*25/
3 K/ 1*2/
4 ALIAS(IJ)
S SETS
6 ADJ(IJ) ADJACENCY MATRIX
7 /1.(2,6)
8 2.(1,3,7)
9 3.(2,4,8)

10 4.(3,5,9)
11 S.(4,10)
12 6.(1,7,11)

13 7.(2,6,8,12)
14 8.(3,7,9,13)
15 9.(4,8,10,14)
16 10.(5,9,15)
17 11.(6,12,16)
18 12.(7,11,13,17)
19 13.(8,12,14,18)
20 14.(9,13,15,19)
21 15.(10,14,20)
22 16.(11,17,21)
23 17.(12,16,18,22)
24 18.(13,17,19,23)
25 19.(14,18,20,24)
26 20.(16,19,25)
27 21.(16,22)
28 22.(17,21,23)
29 23.(18,22,24)
30 24.(19,23,25)
31 25.(20,24)/
32
33 PARAMETERS
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34 M(K) PIXEL SIZE OF KTH SUBREGION
35 /1 3, 2 3/
36
37 L(K) BORDER OF KTH SUBREGION
38 /1 16, 2 16/
39
40 C(I) COST OF EACH PIXEL
41 /1 99, 2 99, 3 99, 4 99, 5 99
42 6 99, 7 11, 8 5, 9 6, 10 99
43 11 99, 12 8, 13 13, 14 2, 15 99
44 16 99, 17 5, 18 1, 19 1, 20 99
45 21 99, 22 99, 23 99, 24 99, 25 99/;
46
47 VARIABLES
48 Z TOTAL COST OF ACQUIRED PIXELS
49 X(IK) BINARY VARIABLE
50 P(I,J,K) BINARY VARIABLE
51 N(I,J,K) BINARY VARIABLE
52
53 BINARY VARIABLES X,P,N;

54
GAMS 2.20 VAX VMS 16-AUG-1992 20:22 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 EQUATIONS
56 OBJ OBJECTIVE FUNCTION
57 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
58 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
59 C3(K) CONSTRAINT FOR BORDER LENGTH
60 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
61 CS(I) CONSTRAINT FOR SUBREGIONS;
62
63 OBJ..
64 Z -E- SUM((I,K), C(I)*X(I,K));
65
66 C1(K)..
67 SUM(I,X(I,K)) -Em M(K);
68
69 C2(I,J,K) $ADJ(I,J)..
70 X(I,K) - X(J,K) - P(I,J,K) + N(I,J,K) -Em 0;
71
72 C3(K)..
73 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) wE- L(K);
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74
75 C4(I,J,K) $ADJ(I,J)..

76 P(IJ,K) + N(I,JK) =L= 1;
77
78 Cs(I)..
79 SUM(K, X(I,K)) =L= 1;

80

81 MODEL SUBREGION /ALL/;

82
83 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;

84
85 SOLVE SUBREGION USING MIP MINIMIZING Z;

86
87 OPTION MIP=ZOOM;
88
89 DISPLAY X.L,P.L,N.L;
90

GAMS 2.20 VAX VMS 16-AUG-1992 20:27 PAGE 30
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

89 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000
9 1.000
14 1.000
17 1.000

18 1.000
19 1.000

89 VARIABLE P.L BINARY VARIABLE

1 2

8 .3 1.000

8 .7 1.000
8 .13 1.000
9 .4 1.000
9 .10 1.000
14.13 1.000
14.15 1.000
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14.19 1.000

17.12 1.000
17.16 1.000
17.22 1.000
18.13 1.000
18.23 1.000

19.14 1.000
19.20 1.000
19.24 1.000

89 VARIABLE N.L BINARY VARIABLE

1 2

3 .8 1.000
4 .9 1.000
7 .8 1.000
10.9 1.000
12.17 1.000
13.8 1.000
13.14 1.000
13.18 1.000
14.19 1.000
15.14 1.000
16.17 1.000
19.14 1.000

20.19 1.000
22.17 1.000
23.18 1.000
24.19 1.000
GAMS 2.20 VAX VMS 16-AUG-1992 20:27 PAGE 31
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

**** FILE SUMMARY

INPUT GSO92D: [JAMRINE] S25X53. GMS; 1
OUTPUT GSO92D: [JAMRINE]S25X53.LIS; 1

EXECUTION TIME = 2.200 SECONDS
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B.5 GAMS S2-1-4, Run #5

This program is set to find two subregions of size one and four. The border

length constraints have been set to eight and twenty.

GAMS 2.20 VAX VMS 16-AUG-1992 20:28 PAGE

GENERAL ALGEBRAIC MODELING SYSTEM

COMPILATION

1 SETS

2 1/ 1*25/

3 K /1*2/
4 ALIAS(I,J)
5 SETS

6 ADJ(I,J) ADJACENCY MATRIX

7 /1.(2,6)

8 2.(1,3,7)
9 3.(2,4,8)

10 4.(3,S,9)

11 5.(4,10)
12 6.(1,7,11)
13 7.(2,6,8,12)

14 8.(3,7,9,13)

15 9.(4,8,10,14)
16 10.(5,9,15)

17 11.(6,12,16)
18 12.(7,11,13,17)
19 13.(8,12,14,18)

20 14.(9,13,15,19)

21 15.(10,14,20)
22 16.(11,17,21)

23 17.(12,16,18,22)

24 18.(13,17,19,23)
25 19.(14,18,20,24)

26 20.(15,19,25)

27 21.(16,22)

28 22.(17,21,23)

29 23.(18,22,24)

30 24.(19,23,25)
31 25.(20,24)/

32

33 PARAMETERS
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34 M(K) PIXEL SIZE OF KTH SUBREGION
35 /1 1, 2 4/
36

37 L(K) BORDER OF KTH SUBREGION
38 / 8, 2 20/
39
40 C(I) COST OF EACH PIXEL
41 /1 99, 2 99, 3 99, 4 99, 5 99
42 6 99, 7 11, 8 5, 9 6, 10 99
43 11 99, 12 8, 13 13, 14 2, 15 99
44 16 99, 17 5, 18 1, 19 1, 20 99
45 21 99, 22 99, 23 99, 24 99, 25 99/;
46
47 VARIABLES
48 Z TOTAL COST OF ACQUIRED PIXELS
49 X(I,K) BINARY VARIABLE
50 P(I,J,K) BINARY VARIABLE

51 N(I,J,K) BINARY VARIABLE
52
53 BINARY VARIABLES X,P,N;
54

GAMS 2.20 VAX VMS 16-AUG-1992 20:28 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 EQUATIONS
56 OBJ OBJECTIVE FUNCTION
57 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
58 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
59 C3(K) CONSTRAINT FOR BORDER LENGTH
60 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
61 CS(I) CONSTRAINT FOR SUBREGIONS;
62
63 OBJ..
64 Z =E= SUM((I,K), C(I)*X(I,K));
65
66 Ci(K)..
67 SUM(I,X(I,K)) =E= M(K);
68
69 C2(IJ,K) $ADJ(I,J)..
70 X(I,K) - X(J,K) - P(I,J,K) + N(I,J,K) =E= 0;
71

72 C3(K)..
73 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =E= L(K);
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74
75 C4(I,J,K) $ADJ(IJ)..
76 P(I,J,K) + N(I,J,K) =L= 1;
77
78 cC(I)..
79 SUM(K, X(IK)) =L= 1;
80
81 MODEL SUBREGION /ALL/;

82
83 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;
84
85 SOLVE SUBREGION USING MIP MINIMIZING Z;
86
87 OPTION MIP=ZOOM;

88
89 DISPLAY X.L,P.L,N.L;
90

GAMS 2.20 VAX VMS 16-AUG-1992 20:28 PAGE 30
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

89 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000
14 1.000
17 1.000
18 1.000
19 1.000

89 VARIABLE P.L BINARY VARIABLE

1 2

8 .3 1.000
8 .7 1.000
8 .9 1.000
8 .13 1.000

14.9 1.000
14.13 1.000
14.15 1.000
17.12 1.000
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17.16 1.000
17.22 1.000
18.13 1.000
18.23 1.000
19.20 1.000
19.24 1.000

89 VARIABLE N.L BINARY VARIABLE

1 2

3 .8 1.000
7 .8 1.000
9 .8 1.000
9 .14 1.000
12.17 1.000
13.8 1.000
13.14 1.000
13.18 1.000
15.14 1.000
16.17 1.000
20.19 1.000

22.17 1.000
23.18 1.000
24.19 1.000
GAMS 2.20 VAX VMS 16-AUG-1992 20:28 PAGE 31
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

**** FILE SUMMARY

INPUT GS092D: [JANRINE] S25X54. GMS; 1
OUTPUT GS092D: [JAMRINE] $S2XS4. LIS; i

EXECUTION TIME - 2.120 SECONDS
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I I II I

B.6 GAMS S2-1-5, Run #6

This program is set to find two subregions of size one and five. The border

length constraints have been set to eight and twenty four.

GAMS 2.20 VAX VMS 16-AUG-1992 20:31 PAGE

GENERAL ALGEBRAIC MODEL ING SYSTEM

COMP ILATI ON

1 SETS

2 1/ 1*25/
3 K/ 1*2/
4 ALIAS(I,J)
5 SETS

6 ADJ(IJ) ADJACENCY MATRIX
7 /1.(2,6)

8 2.(1,3,7)
9 3.(2,4,8)

10 4.(3,5,9)
11 5.(4,10)

12 6.(1,7,11)
13 7.(2,6,8,12)
14 8.(3,7,9,13)

15 9.(4,8,10,14)
16 10.(5,9,15)
17 11.(6,12,16)
18 12.(7,11,13,17)

19 13.(8,12,14,18)
20 14.(9,13,15,19)

21 15.(10,14,20)
22 16.(11,17,21)

23 17.(12,16,18,22)

24 18.(13,17,19,23)

25 19.(14,18,20,24)
26 20.(15,19,25)
27 21.(16,22)

28 22.(17,21,23)
29 23.(18,22,24)
30 24.(19,23,25)
31 25.(20,24)/

32

33 PARAMETERS
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34 M(K) PIXEL SIZE OF KTH SUBREGION
35 / 1, 2 S/
36
37 L(K) BORDER OF KTH SUBREGION
38 /1 8, 2 24/

39
40 C(I) COST OF EACH PIXEL
41 /1 99, 2 99, 3 99, 4 99, 5 99
42 6 99, 7 11, 8 5, 9 6, 10 99

43 11 99, 12 8, 13 13, 14 2, 15 99
44 16 99, 17 5, 18 1, 19 1, 20 99
45 21 99, 22 99, 23 99, 24 99, 25 99/;
46
47 VARIABLES
48 Z TOTAL COST OF ACQUIRED PIXELS
49 X(I,K) BINARY VARIABLE
50 P(I,J,K) BINARY VARIABLE
51 N(I,J,K) BINARY VARIABLE
52
53 BINARY VARIABLES X,P,N;
54

GAMS 2.20 VAX VMS 16-AUG-1992 20:31 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 EQUATIONS
56 OBJ OBJECTIVE FUNCTION
57 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
58 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
59 C3(K) CONSTRAINT FOR BORDER LENGTH
60 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
61 C5(I) CONSTRAINT FOR SUBREGIONS;
62
63 OBJ..
64 Z =E= SUM((I,K), C(I)*X(I,K));
65
66 Ci(K)..
67 SUM(I,X(I,K)) =E= M(K);
68
69 C2(I,J,K) $ADJ(I,J)..
70 X(I,K) - X(J,K) - P(I,J,K) + N(I,J,K) =E= 0;
71
72 C3(K)..
73 SUM(CI,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =Ez L(K);
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74
75 C4(I,J,K) $ADJ(I,J)..
76 P(I,JK) + N(I,J,K) =L= 1;

77
78 CS(I)..
79 SUM(K, X(I,K)) =L= 1;
80

81 MODEL SUBREGION /ALL/;
82
83 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;
84
85 SOLVE SUBREGION USING MIP MINIMIZING Z;
86
87 OPTION MIP=ZOOM;
88
89 DISPLAY X.L,P.L,N.L;
90

GAMS 2.20 VAX VMS 16-AUG-1992 20:36 PAGE 30
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

89 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000
9 1.000
14 1.000
17 1.000
18 1.000
19 1.000

89 VARIABLE P.L BINARY VARIABLE

1 2

8 .3 1.000
8 .7 1.000
8 .9 1.000
8 .13 1.000
9 .4 1.000
9 .8 1.000
9 .10 1.000

211



14.13 1.000
14.15 1.000
17.12 1.000
17.16 1.000
17.22 1.000
18.13 1.000
18.23 1.000
19.20 1.000
19.24 1.000

89 VARIABLE N.L BINARY VARIABLE

1 2

3 .8 1.000
4 .9 1.000
7 .8 1.000
8 .9 1.000
9 .8 1.000
10.9 1.000
12.17 1.000
13.8 1.000
13.14 1.000
13.18 1.000
15.14 1.000
16.17 1.000
20.19 1.000
22.17 1.000
23.18 1.000
24.19 1.000
GAMS 2.20 VAX VMS 16-AUG-1992 20:36 PAGE 31
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

**** FILE SUMMARY

INPUT GSO92D: EJAMRINE $S26X56. GNS; 1
OUTPUT GSO92D: EJAMRINE]S25X55.LIS;1

EXECUTION TIME = 2.330 SECONDS
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B.7 GAMS S2-1-6, Run #7

This program is set to find two subregions of size one and six. The border length

constraints have been set to eight and twenty.

GAMS 2.20 VAX VMS 17-AUG-1992 09:27 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1 SETS
2 1/ 1*25/
3 K/ 1*2/
4 ALIAS(I,J)
5 SETS
6 ADJ(I,J) ADJACENCY MATRIX
7 /1.(2,6)
8 2.(1,3,7)
9 3.(2,4,8)

10 4.(3,5,9)
11 5.(4,10)
12 6.(1,7,11)
13 7.(2,6,8,12)
14 8.(3,7,9,13)
15 9.(4,8,10,14)
16 10.(5,9,15)
17 11.(6,12,16)
18 12.(7,11,13,17)
19 13.(8,12,14,18)
20 14.(9,13,15,19)
21 15.(10,14,20)
22 16.(11,17,21)
23 17.(12,16,18,22)
24 18.(13,17,19,23)
25 19.(14,18,20,24)
26 20.(15,19,25)
27 21.(16,22)
28 22.(17,21,23)
29 23.(18,22,24)
30 24.(19,23,25)
31 25.(20,24)/

32
33 PARAMETERS
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34 M(K) PIXEL SIZE OF KTH SUBREGION

35 /11 , 2 6/

36
37 L(K) BORDER OF KTH SUBREGION

38 / 8, 2 20/
39
40 C(I) COST OF EACH PIXEL

41 I 1 99, 2 99, 3 99, 4 99, 5 99

42 6 99, 7 11, 8 5, 9 6, 10 99

43 11 99, 12 8, 13 13, 14 2, 15 99

44 16 99, 17 5, 18 1, 19 1, 20 99

45 21 99, 22 99, 23 99, 24 99, 25 99/;

46
47 VARIABLES
48 Z TOTAL COST OF ACQUIRED PIXELS
49 X(I,K) BINARY VARIABLE
50 P(I,J,K) BINARY VARIABLE
51 N(I,J,K) BINARY VARIABLE
52
53 BINARY VARIABLES X,P,N;
54

GAMS 2.20 VAX VMS 17-AUG-1992 09:27 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 EQUATIONS
56 OBJ OBJECTIVE FUNCTION

57 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
58 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
59 C3(K) CONSTRAINT FOR BORDER LENGTH
60 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
61 C5(I) CONSTRAINT FOR SUBREGIONS;
62
63 OBJ..
64 Z =E= SUM((I,K), C(I)*X(I,K));
65
66 CI(K)..
67 SUM(I,X(I,K)) =E= M(K);

68
69 C2(I,J,K) $ADJ(I,J)..

70 X(I,K) - X(J,K) - P(I,J,K) + N(I,J,K) =E= 0;
71

72 C3(K)..
73 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =E= L(K);
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74

75 C4(I,J,K) $ADJ(I,J)..

76 P(I,JK) + N(IJ,K) =L= 1;

77
78 CS(I)..
79 SUM(K, X(IK)) =L= t;

80

81 MODEL SUBREGION /ALL/;

82
83 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;
84
85 SOLVE SUBREGION USING MIP MINIMIZING Z;
86
87 OPTION MIP=ZOOM;
88
89 DISPLAY X.L,P.L,N.L;
90

GAMS 2.20 VAX VMS 17-AUG-1992 09:34 PAGE 30

GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

89 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000

9 1.000
13 1.000
14 1.000

17 1.000
18 1.000

19 1.000

89 VARIABLE P.L BINARY VARIABLE

1 2

8 .3 1.000

8 .7 1.000

9 .4 1.000
9 .10 1.000

13.12 1.000

14.15 1.000
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17.12 1.000
17.16 1.000
17.18 1.000
17.22 1.000
18.17 1.000
18.23 1.000

19.20 1.000

19.24 1.000

89 VARIABLE N.L BINARY VARIABLE

1 2

3 .8 1.000
4 .9 1.000

7 .8 1.000
10.9 1.000

12.13 1.000

12.17 1.000
15.14 1.000
16.17 1.000
17.18 1.000
18.17 1.000

20.19 1.000

22.17 1.000
23.18 1.000
24.19 1.000
GAMS 2.20 VAX VMS 17-AUG-1992 09:34 PAGE 31
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

**** FILE SUMMARY

INPUT GSO92D: [JAMRINE)S25X56.GMS;2
OUTPUT GSO92D: [JAMRINE]S25X56.LIS;2

EXECUTION TIME = 2.380 SECONDS
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Appendix C. GAMS Computer Runs; Min/Max Objective Function

In this appendix, two CAMS computer runs are included. These runs show the

effect of running the model with a minimize objective function and with a maximize

objective function. In both programs, only one subregion of four-pixel size is being

located.

C.1 GAMS S$-4, Run #1

GAMS 2.20 VAX VMS 18-AUG-1992 20:44 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1
2 SETS
3 1/ 1*36/
4 K 1*1/
5 ALIAS(I,J)
6 SETS
7 ADJ(I,J) ADJACENCY MATRIX
8 /1.(2,7)
9 2.(1,3,8)

10 3.(2,4,9)
11 4.(3,5,10)
12 5.(4,6,11)
13 6.(5,12)
14 7.(1,8,13)
15 8.(2,7,9,14)
16 9.(3,8,10,15)

17 10.(4,9,11,16)
18 11.(5,10,12,17)

19 12.(6,11,18)
20 13.(7,14,19)
21 14.(8,13,15,20)
22 15.(9,14,16,21)
23 16.(10,15,17,22)
24 17.(11,16,18,23)
25 18.(12,17,24)
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26 19.(13,20,25)

27 20.(14,19,21,26)
28 21.(15,20,22,27)

29 22.(16,21,23,28)
30 23.(17,22,24,29)

31 24.(18,23,30)
32 25.(19,26,31)

33 26.(20,25,27,32)

34 27.(21,26,28,33)
35 28.(22,27,29,34)
36 29.(23,28,30,35)
37 30.(24,29,36)

38 31.(25,32)
39 32.(26,31,33)
40 33.(27,32,34)
41 34.(28,33,35)

42 35.(29,34,36)
43 36.(30,35)/
44
45 PARAMETERS

46 M(K) PIXEL SIZE OF KTH SUBREGION

47 /1 4/
48
49 L(K) BORDER OF KTH SUBREGION

50 /1 20/
51
52 C(I) COST OF EACH PIXEL

53 / 1 99, 2 99, 3 99, 4 99, 5 99, 6 99

54 7 99, 8 1, 9 1, 10 1, 11 1, 12 99

GAMS 2.20 VAX VMS 18-AUG-1992 20:44 PAGE 2

GENERAL ALGEBRAIC MODELING SYSTEM

COMPILATION

55 13 99, 14 2, 1S 2, 16 2, 17 2, 18 99

56 19 99, 20 3, 21 3, 22 3, 23 3, 24 99

57 25 99, 26 4, 27 4, 28 4, 29 4, 30 99

58 31 99, 32 99, 33 99, 34 99, 35 99, 36 99/;

59
60 VARIABLES
61 Z TOTAL COST OF ACQUIRED PIXELS
62 X(I,K) BINARY VARIABLE
63 P(I,J,K) BINARY VARIABLE
64 N(I,J,K) BINARY VARIABLE
65
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66 BINARY VARIABLES X,P,N;
67
68 EQUATIONS
69 OBJ OBJECTIVE FUNCTION
70 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
71 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
72 C3(K) CONSTRAINT FOR BORDER LENGTH
73 C4(I,JK) CONSTRAINT FOR P&N MUTUAL EXCLUSION
74 C5(I) CONSTRAINT FOR SUBREGIONS;
75
76 OBJ..
77 Z =E= SUM((I,K), C(I)*X(I,K));
78
79 C1(K)..
80 SUM(IX(IK)) =E= M(K);
81
82 C2(I,JK) *ADJ(IJ)..
83 X(I,K) - X(JK) - P(I,J,K) + N(I,J,K) =E= 0;
84
85 C3(K)..
86 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =E= L(K);
87
88 C4(I,J,K) $ADJ(I,J)..
89 P(I,JK) + N(I,J,K) =L= 1;
90
91 C5(I)..
92 SUM(K, X(I,K)) =L= 1;
93
94 MODEL SUBREGION /ALL/;
95
96 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;
97
98 SOLVE SUBREGION USING MIP MINIMIZING Z;
99
100 OPTION MIP=ZOOM;
101
102 DISPLAY X.L,P.L,N.L;
103
104

GAMS 2.20 VAX VMS 18-AUG-1992 20:45 PAGE 25
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

102 VARIABLE X.L BINARY VARIABLE
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8 1.000
9 1.000
10 1.000

11 1.000

102 VARIABLE P.L BINARY VARIABLE

1

8 .2 1.000
8 .7 1.000
8 .14 1.000
9 .3 1.000
9 .15 1.000
10.4 1.000
10.16 1.000
11.5 1.000
11.12 1.000
11.17 1.000

102 VARIABLE N.L BINARY VARIABLE

1

2 .8 1.000
3 .9 1.000
4 .10 1.000
5 .11 1.000
7 .8 1.000
12.11 1.000
14.8 1.000
15.9 1.000
16.10 1.000
17.11 1.000

**** FILE SUMMARY

INPUT GSO92D:[JAMRINE]S26X6.GMS;1
OUTPUT GSO92D:[JAMRINE]S26X6.LIS;1
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EXECUTION TIME 2.100 SECONDS
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C.2 GAMS S1-4, Run #2

GAMS 2.20 VAX VMS 18-AUG-1992 20:57 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1
2 SETS
3 1/ 1*36/
4 K/ 1*1/
5 ALIAS(I,J)
6 SETS

7 ADJ(I,J) ADJACENCY MATRIX
8 /1.(2,7)
9 2.(1,3,8)

10 3.(2,4,9)
11 4.(3,5,10)

12 5.(4,6,11)
13 6.(5,12)
14 7.(1,8,13)
15 8.(2,7,9,14)
16 9.(3,8,10,15)
17 10.(4,9,11,16)
18 11.(5,10,12,17)
19 12.(6,11,18)
20 13.(7,14,19)
21 14.(8,13,15,20)
22 15.(9,14,16,21)

23 16.(10,15,17,22)
24 17.(11,16,18,23)
25 18.(12,17,24)
26 19.(13,20,25)
27 20.(14,19,21,26)
28 21.(15,20,22,27)
29 22.(16,21,23,28)
30 23.(17,22,24,29)
31 24.(18,23,30)
32 25.(19,26,31)
33 26.(20,25,27,32)
34 27.(21,26,28,33)
35 28.(22,27,29,34)
36 29.(23,28,30,35)
37 30.(24,29,36)
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38 31.(25,32)
39 32.(26,31,33)
40 33.(27,32,34)
41 34.(28,33,35)
42 35.(29,34,36)
43 36.(30,35)/
44
45 PARAMETERS
46 M(K) PIXEL SIZE OF KTH SUBREGION
47 /1 4/
48
49 L(K) BORDER OF KTH SUBREGION
50 /1 20/
51
52 C(I) COST OF EACH PIXEL
53 /1 0, 2 0, 3 0, 4 0, 5 0, 6 0
54 7 0, 8 1, 9 1, 10 1, 11 1, 12 0

GAMS 2.20 VAX VMS 18-AUG-1992 20:57 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 13 0, 14 2, 15 2, 16 2, 17 2, 18 0
56 19 0, 20 3, 21 3, 22 3, 23 3, 24 0

57 25 0, 26 4, 27 4, 28 4, 29 4, 30 0
58 31 0, 32 0, 33 0, 34 0, 35 0, 36 0/;

59
60 VARIABLES
61 Z TOTAL COST OF ACQUIRED PIXELS
62 X(I,K) BINARY VARIABLE
63 P(I,J,K) BINARY VARIABLE
64 N(I,J,K) BINARY VARIABLE
65
66 BINARY VARIABLES X,P,N;
67
68 EQUATIONS
69 OBJ OBJECTIVE FUNCTION
70 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
71 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
72 C3(K) CONSTRAINT FOR BORDER LENGTH
73 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
74 C5(I) CONSTRAINT FOR SUBREGIONS;
75
76 OBJ..
77 Z =E= SUM((I,K), C(I)*X(I,K));
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78
79 CI(K)..

80 SUM(I,X(I,K)) =E= M(K);
81
82 C2(I,J,K) $ADJ(I,J)..
83 X(I,K) - X(J,K) - P(I,J,K) + N(I,JK) =E= 0;
84
85 C3(K)..
86 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,JK)) =E= L(K);
87
88 C4(I,J,K) $ADJ(I,J)..
89 P(I,J,K) + N(I,J,K) =L= 1;
90
91 C5(I)..
92 SUM(K, X(I,K)) =L= 1;
93
94 MODEL SUBREGION /ALL/;
95
96 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;
97
98 SOLVE SUBREGION USING NIP MAXIMIZING Z;
99

100 OPTION MIP=ZOOM;
101
102 DISPLAY X.L,P.L,N.L;
103
104

GAMS 2.20 VAX VMS 18-AUG-1992 20:57 PAGE 25
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

102 VARIABLE X.L BINARY VARIABLE

1

26 1.000
27 1.000
28 1.000
29 1.000

102 VARIABLE P.L BINARY VARIABLE

1
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26.20 1.000
26.25 1.000
26.32 1.000
27.21 1.000
27.33 1.000

28.22 1.000
28.34 1.000
29.23 1.000
29.30 1.000
29.35 1.000

102 VARIABLE N.L BINARY VARIABLE

1

20.26 1.000
21.27 1.000
22.28 1.000
23.29 1.000
25.26 1.000
30.29 1.000
32.26 1.000
33.27 1.000
34.28 1.000
35.29 1.000

**** FILE SUMMARY

INPUT GS092D: [JAMRINE]S26X61.GMS;2
OUTPUT GS092D: [JAMRINE] S26X61.LIS; 2

EXECUTION TIME = 1.940 SECONDS

225



Appendix D. GAMS Computer Runs With Subregion Bounds

In this appendix, three GAMS computer runs are included. These runs show

the effect of adding subregion bounds contraints explained in Chapter 3. In the first

run, the subregions totals (cost totals) are set to a certain value. In the second and

third run, the subregions are given a range of possible cost totals.

D.1 GAMS 82-3-4, Run #1

GAMS 2.20 VAX VMS 20-AUG-1992 21:09 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1
2 SETS
3 1/ 1*36/
4 K/ 1*2/

5 ALIAS (I, J)
6 SETS
7 ADJ(I,J) ADJACENCY MATRIX
8 /1.(2,7)
9 2.(1,3,8)

10 3.(2,4,9)
11 4.(3,5,10)
12 5.(4,6,11)
13 6.(5,12)
14 7.(1,8,13)
15 8.(2,7,9,14)
16 9.(3,8,10,15)
17 10.(4,9,11,16)

18 11.(5,10,12,17)
19 12.(6,11,18)
20 13.(7,14,19)
21 14.(8,13,15,20)
22 15.(9,14,16,21)
23 16.(10,15,17,22)
24 17.(11,16,18,23)
25 18.(12,17,24)
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26 19.(13,20,25)
27 20.(14,19,21,26)
28 21.(15,20,22,27)

29 22.(16,21,23,28)
30 23.(17,22,24,29)

31 24.(18,23,3C)
32 25.(19,26,31)
33 26.(20,25,27,32)

34 27.(21,26,28,33)

35 28.(22,27,29,34)
36 29.(23,28,30,35)
37 30.(24,29,36)
38 31.(25,32)

39 32.(26,31,33)
40 33.(27,32,34)
41 34.(28,33,35)
42 35.(29,34,36)
43 36.(30,35)/
44

45 PARAMETERS
46 M(K) PIXEL SIZE OF KTH SUBREGION
47 /1 3, 2 4/
48

49 L(K) BORDER OF KTH SUBREGION
50 /1 16, 2 20/
51
52 C(I) COST OF EACH PIXEL
53 / 1 99, 2 99, 3 99, 4 99, 5 99, 6 99
54 7 99, 8 1, 9 1, 10 1, 11 1, 12 99

GAMS 2.20 VAX VMS 20-AUG-1992 21:09 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 13 99, 14 2, 15 2, 16 2, 17 2, 18 99
56 19 99, 20 3, 21 3, 22 3, 23 3, 24 99
57 25 99, 26 4, 27 4, 28 4, 29 4, 30 99
58 31 99, 32 99, 33 99, 34 99, 35 99, 36 99/;
59
60 VARIABLES
61 Z TOTAL COST OF ACQUIRED PIXELS
62 X(I,K) BINARY VARIABLE
63 P(I,J,K) BINARY VARIABLE
64 N(I,J,K) BINARY VARIABLE
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65

66 BINARY VARIABLES X,P,N;
67
68 EQUATIONS
69 OBJ OBJECTIVE FUNCTION

70 CiCK) CONSTRAINT FOR SIZE OF KTH SUBREGION

71 C2(I,J,K) CONSTRAINT FOR CONTIGUITY

72 C3(X) CONSTRAINT FOR BORDER LENGTH

73 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION

74 C5(I) CONSTRAINT FOR SUBREGIONS

75 C6 CONSTRAINT FOR SUBREGION 1 COST

76 C7 CONSTRAINT FOR SUBREGION 2 COST;
77
78
79 OBJ..
80 Z =E= SUM((I,K), C(I)*X(I,K));
81
82 CI(K)..

83 SUM(IX(I,K)) =E= M(K);
84
85 C2(IJ,K) $ADJ(I,J)..
86 X(I,K) - X(J,K) - P(I,J,K) + N(I,J,K) =E= 0;

87
88 C3(K)..
89 SUM((I,J) $ADJ(I,J), P(I,J,K) + N(I,JK)) =E= L(K);
90
91 C4(I,J,K) $ADJ(I,J)..
92 P(I,J,K) + N(I,JK) =L= 1;
93
94 C5(I)..
95 SUM(K, X(I,K)) =L= 1;
96
97 C6..
98 SUM(I, C(I)*X(I,"1")) =E= 3;

99
100 C7..
101 SUM(I, C(I)*X(I,"2")) -E= 16;
102
103 MODEL SUBREGION /ALL/;
104
105 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;

106
107 SOLVE SUBREGION USING NIP MINIMIZING Z;

108
GANS 2.20 VAX VMS 20-AUG-1992 21:09 PAGE 3
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GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

109 OPTION MIP=ZOOM;
110
III DISPLAY X.L,P.L,N.L;
112
113

GAMS 2.20 VAX VMS 20-AUG-1992 21:41 PAGE 40
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

111 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000

9 1.000
10 1.000
26 1.000
27 1.000
28 1.000
29 1.000

111 VARIABLE P.L BINARY VARIABLE

1 2

8 .2 1.000
8 .7 1.000
8 .14 1.000
9 .3 1.000
9 .15 1.000
10.4 1.000
10.11 1.000
10.16 1.000
26.20 1.000
26.25 1.000
26.32 1.000
27.21 1.000
27.33 1.000
28.22 1.000
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28.34 1.000
29.23 1.000

29.30 1.000
29.35 1.000

111 VARIABLE N.L BINARY VARIABLE

1 2

2 .8 1.000
3 .9 1.000
4 .10 1.000
7 .8 1.000
11.10 1.000
14.8 1.000
15.9 1.000
16.10 1.000
20.26 1.000
21.27 1.000
22.28 1.000
23.29 1.000
25.26 1.000
GAMS 2.20 VAX VMS 20-AUG-1992 21:41 PAGE 41
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

111 VARIABLE N.L BINARY VARIABLE

1 2

30.29 1.000
32.26 1.000
33.27 1.000
34.28 1.000
35.29 1.000

**** FILE SUMMARY

INPUT GSO92D:[JAMRINE]S26X62.GMS;30
OUTPUT GSO92D:[JAMRINE]S26X62.LIS;32

EXECUTION TIME 2.850 SECONDS
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D.2 GAMS S2-3-4, Run 112

GAMS 2.20 VAX VMS 23-AUG-1992 17:29 PAGE

GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1

2 SETS
3 1/ 1*36/
4 K/ 1*2/
5 ALIAS(I,J)

6 SETS
7 ADJ(I,J) ADJACENCY MATRIX

8 /1.(2,7)

9 2.(1,3,8)
10 3.(2,4,9)
11 4.(3,5,10)

12 5.(4,6,11)

13 6.(5,12)
14 7.(1,8,13)

15 8.(2,7,9,14)
16 9.(3,8,10,15)

17 10.(4,9,11,16)
18 11.(5,10,12,17)

19 12.(6,11,18)
20 13.(7,14,19)

21 14.(8,13,15,20)
22 15.(9,14,16,21)
23 16.(10,15,17,22)

24 17.(11,16,18,23)

25 18.(12,17,24)

26 19.(13,20,25)
27 20.(14,19,21,26)

28 21.(15,20,22,27)
29 22.(16,21,23,28)

30 23.(17,22,24,29)

31 24.(18,23,30)

32 25.(19,26,31)
33 26.(20,25,27,32)

34 27.(21,26,28,33)
35 28.(22,27,29,34)

36 29.(23,28,30,35)

37 30.(24,29,36)
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38 31.(25,32)
39 32.(26,31,33)
40 33.(27,32,34)
41 34.(28,33,35)
42 35.(29,34,36)
43 36.(30,35)/
44
45 PARAMETERS
46 MWK) PIXEL SIZE OF KTH SUBREGION
47 /1 8, 2 2/
48
49 L(K) BORDER OF KTH SUBREGION
50 /1 24, 2 12/
51
52 C(I) COST OF EACH PIXEL
53 / 1 99, 2 99, 3 99, 4 99, 5 99, 6 99
54 7 99, 8 1, 9 1, 10 1, 11 1, 12 99

GAMS 2.20 VAX VMS 23-AUG-1992 17:29 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 13 99, 14 2, 15 2, 16 2, 17 2, 18 99
56 19 99, 20 3, 21 3, 22 3, 23 3, 24 99
57 25 99, 26 4, 27 4, 28 4, 29 4, 30 99
58 31 99, 32 99, 33 99, 34 99, 35 99, 36 99/;
59
60 VARIABLES
61 Z TOTAL COST OF ACQUIRED PIXELS
62 X(I,K) BINARY VARIABLE
63 P(I,J,K) BINARY VARIABLE
64 N(I,J,K) BINARY VARIABLE
65
66 BINARY VARIABLES X,P,N;
67
68 EQUATIONS
69 OBJ OBJECTIVE FUNCTION
70 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
71 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
72 C3(K) CONSTRAINT FOR BORDER LENGTH
73 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
74 C5(I) CONSTRAINT FOR SUBREGIONS
75 C6 CONSTRAINT FOR SUBREGION 1 COST (UPPER BOUND)
76 C7 CONSTRAINT FOR SUBREGION 1 COST (LOWER BOUND)
77 C8 CONSTRAINT FOR SUBREGION 2 COST (UPPER BOUND)
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78 C9 CONSTRAINT FOR SUBREGION 2 COST (LOWER BOUND);

79
80 OBJ..
81 Z =E= SUM((IK), C(I)*X(I,K));
82
83 Cl(K)..
84 SUM(IX(I,K)) =E= M(K);
85
86 C2(I,J,K) $ADJ(I,J)..
87 X(I,K) - X(J,K) - P(I,J,K) + N(IJ,K) =E= 0;
88
89 C3(K)..
90 SUM((I,J) $ADJ(IJ), P(I,J,K) + N(I,J,K)) =E= L(K);
91
92 C4(I,J,K) $ADJ(I,J)..
93 P(I,J,K) + N(I,J,K) =L= 1;
94
95 C5(I)..
96 SUM(K, X(I,K)) =L= 1;
97
98 C6..
99 SUM(I, C(I)*X(I,"I")) =L= 32;
100

101 C7..
102 SUM(I, C(I)*X(I,"1")) =G= 24;
103
104
105 C8..
106 SUM(I, C(I)*X(I,"2")) =L= 4;
107
108 C9..

GAMS 2.20 VAX VMS 23-AUG-1992 17:29 PAGE 3
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

109 SUM(I, C(I)*X(I,"2")) =G= 2;
110
111
112 MODEL SUBREGION /ALL/;
113
114 OPTIONS ITERLIM = 1000000, RESLIM = 1000000, WORK = 20000;
115
116 SOLVE SUBREGION USING MIP MINIMIZING Z;
117
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118 OPTION MIP=ZOOM;
119
120 DISPLAY X.L,P.L,N.L;
121
122

GAMS 2.20 VAX VMS 23-AUG-1992 17:39 PAGE 40
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

120 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000
9 1.000
14 1.000
15 1.000
20 1.000
21 1.000
22 1.000
26 1.000
27 1.000
28 1.000

120 VARIABLE P.L BINARY VARIABLE

1 2

8 .2 1.000
8 .7 1.000
8 .14 1.000
9 .3 1.000
9 .10 1.000
9 .15 1.000
14.8 1.000
14.13 1.000
15.9 1.000
15.16 1.000
20.19 1.000
22.16 1.000
22.23 1.000
26.25 1.000
26.32 1.000
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27.33 1.000
28.29 1.000
28.34 1.000

120 VARIABLE N.L BINARY VARIABLE

1 2

2 .8 1.000
3 .9 1.000
7 .8 1.000
8 .14 1.000
9 .15 1.000
10.9 1.000
13.14 1.000
14.8 1.000
15.9 1.000
16.15 1.000
GAMS 2.20 VAX VMS 23-AUG-1992 17:39 PAGE 41
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

120 VARIABLE N.L BINARY VARIABLE

1 2

16.22 1.000
19.20 1.000
23.22 1.000
25.26 1.000
29.28 1.000
32.26 1.000
33.27 1.000

34.28 1.000

**** FILE SUMMARY

INPUT GSO92D:[JAMRINE)S26X63.GMS;4

OUTPUT GSO92D:CJAMRINE]S26X63.LIS;4

EXECUTION TIME = 2.770 SECONDS
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D.3 GAMS S2-3-4, Run #3

GAMS 2.20 VAX VMS 23-AUG-1992 18:10 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1
2 SETS
3 1/ 1*36/
4 K/ 1*2/
5 ALIAS(I, J)
6 SETS

7 ADJ(I,J) ADJACENCY MATRIX
8 /1.(2,7)

9 2.(1,3,8)
10 3.(2,4,9)

11 4.(3,5,10)
12 5.(4,6,11)
13 6.(5,12)
14 7.(1,8,13)
15 8.(2,7,9,14)
16 9.(3,8,10,15)
17 10.(4,9,11,16)
18 11.(5,10,12,17)
19 12.(6,11,18)

20 13.(7,14,19)
21 14.(8,13,15,20)
22 15.(9,14,16,21)

23 16.(10,15,17,22)
24 17.(11,16,18,23)
25 18.(12,17,24)
26 19.(13,20,25)
27 20.(14,19,21,26)
28 21.(15,20,22,27)
29 22.(16,21,23,28)
30 23.(17,22,24,29)

31 24.(18,23,30)
32 25.(19,26,31)
33 26.(20,25,27,32)

34 27.(21,26,28,33)
35 28.(22,27,29,34)

36 29.(23,28,30,35)
37 30. (24,29,36)
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38 31.(25,32)
39 32.(26,31,33)
40 33.(27,32,34)
41 34.(28,33,35)
42 35.(29,34,36)
43 36.(30,35)/

44
45 PARAMETERS
46 MWK) PIXEL SIZE OF KTH SUBREGION

47 /1 8, 2 2/
48
49 L(K) BORDER OF KTH SUBREGION
50 /1 24, 2 12/
51
52 C(I) COST OF EACH PIXEL
53 /1 99, 2 99, 3 99, 4 99, 5 99, 6 99
54 7 99, 8 1, 9 1, 10 1, 11 1, 12 99

GAMS 2.20 VAX VMS 23-AUG-1992 18:10 PAGE 2
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

55 13 99, 14 2, 15 2, 16 2, 17 2, 18 99
56 19 99, 20 3, 21 3, 22 3, 23 3, 24 99
57 25 99, 26 4, 27 4, 28 4, 29 4, 30 99
58 31 99, 32 99, 33 99, 34 99, 35 99, 36 99/;
59
60 VARIABLES
61 Z TOTAL COST OF ACQUIRED PIXELS
62 X(I,K) BINARY VARIABLE
63 P(I,J,K) BINARY VARIABLE
64 N(I,J,K) BINARY VARIABLE
65
66 BINARY VARIABLES X,P,N;
67
68 EQUATIONS
69 OBJ OBJECTIVE FUNCTION
70 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
71 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
72 C3(K) CONSTRAINT FOR BORDER LENGTH
73 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
74 CS(I) CONSTRAINT FOR SUBREGIONS
75 C6 CONSTRAINT FOR SUBREGION 1 COST (UPPER BOUND)
76 C7 CONSTRAINT FOR SUBREGION 1 COST (LOWER BOUND)
77 C8 CONSTRAINT FOR SUBREGION 2 COST (UPPER BOUND)
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78 C9 CONSTRAINT FOR SUBREGION 2 COST (LOWER BOUND);
79
80 OBJ..
81 Z =E= SUM((I,K), C(I)*X(I,K));
82
83 C1(K)..
84 SUM(IX(I,K)) =E= M(K);
85

86 C2(I,J,K) $ADJ(I,J)..
87 X(I,K) - X(J,K) - P(I,J,K) + N(I,J,K) =E= 0;
88
89 C3(K)..
90 SUM((IJ) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =E= L(K);
91
92 C4(I,J,K) $ADJ(I,J)..
93 P(I,J,K) + N(I,J,K) =L- 1;
94
95 CS(I)..
96 SUM(K, X(I,K)) =L= 1;
97
98 C6..
99 SUM(I, C(I)*X(I,"I")) =L= 32;
100
101 C7..
102 SUM(I, C(I)*X(I,"I")) =G= 26;
103
104
105 C8..
106 SUM(I, C(I)*X(I,"1 2")) =L= 4;
107
108 C9..

GAMS 2.20 VAX VMS 23-AUG-1992 18:10 PAGE 3
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

109 SUM(I, C(I)*X(I,"2")) =G= 2;
110
111
112 MODEL SUBREGION /ALL/;

113
114 OPTIONS ITEBLIM = 1000000, RESLIM 1000000, WORK 20000;
115
116 SOLVE SUBREGION USING MIP MINIMIZING Z;
117
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118 OPTION MIP=ZOOM;
119
120 DISPLAY X.L,P.LN.L;
121
122

GAMS 2.20 VAX VMS 23-AUG-1992 18:21 PAGE 40
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

120 VARIABLE X.L BINARY VARIABLE

1 2

8 1.000
9 1.000
20 1.000
21 1.000
22 1.000
23 1.000
26 1.000
27 1.000
28 1.000
29 1.000

120 VARIABLE P.L BINARY VARIABLE

1 2

8 .2 1.000
8 .7 1.000
8 .14 1.000
9 .3 1.000
9 .10 1.000
9 .15 1.000
20.14 1.000
20.19 1.000
21.15 1.000
22.16 1.000
23.17 1.000
23.24 1.000
26.25 1.000
26.32 1.000
27.33 1.000
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28.34 1.000
29.30 1.000
29.35 1.000

120 VARIABLE N.L BINARY VARIABLE

1 2

2 .8 1.000
3 .9 1.000
7 .8 1.000
10.9 1.000
14.8 1.000
14.20 1.000
15.9 1.000
15.21 1.000
16.22 1.000

17.23 1.000
GAMS 2.20 VAX VMS 23-AUG-1992 18:21 PAGE 41
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

120 VARIABLE N.L BINARY VARIABLE

1 2

19.20 1.000

24.23 1.000
25.26 1.000
30.29 1.000
32.26 1.000
33.27 1.000
34.28 1.000
35.29 1.000

**** FILE SUMMARY

INPUT GS092D: [JAMRINE]S26X63B.GMS;2
OUTPUT GSO92D: [JAMRINE] S26X63B.LIS ; 2

EXECUTION TIME - 2.860 SECONDS
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Appendix E. SPOT Subimage Gray Values

In this appendix are displayed the gray values of the subimage by channel.

Each 48 x 18 subimage is surrounded by a border of 999s. These numbers are not

part of the actual subimage but rather assist the model in accounting for border

lengths. Since the SPOT data is eight-bit, the allowable range for the gray value is

0 - 255.

E. 1 Channel 1 Gray Values

999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
999 224 222 214 213 215 219 221 217 198 211 204 157 174 145 139 168 90 58 999
999 168 192 204 210 213 210 198 214 211 204 211 174 186 192 163 163 82 107 999
999 121 139 139 139 174 157 133 204 168 121 174 163 107 127 168 145 82 157 999
999 192 168 163 192 198 174 174 211 174 121 186 127 90 145 192 121 74 180 999
999 157 145 139 151 163 139 174 210 168 139 157 139 186 204 163 107 82 139 999
999 25 99 133 99 133 157 180 204 180 168 157 211 214 151 99 99 74 90 999
999 0 33 145 151 151 157 151 213 151 151 192 204 192 74 145 157 58 90 999
999 0 0 74 133 115 133 174 210 115 145 192 174 139 121 192 157 99 145 999
999 0 0 16 133 139 151 180 192 192 192 168 145 163 186 180 145 82 145 999
999 0 0 0 139 168 157 186 192 215 168 115 151 192 180 139 115 107 157 999
999 0 0 0 121 145 163 180 192 210 115 151 174 210 180 133 115 82 99 999
999 0 0 6 121 157 168 192 210 218 174 145 192 204 157 168 107 107 121 999
999 0 0 22 157 157 174 213 215 216 211 163 127 127 127 168 133 127 163 999
999 0 0 133 168 115 99 174 174 133 192 192 139 82 127 174 127 139 180 999
999 0 107 180 139 139 139 198 204 127 163 210 198 151 115 163 107 115 151 999
999 180 198 107 107 145 174 186 214 180 151 186 213 215 180 157 90 74 121 999
999 214 107 58 151 151 145 168 211 163 157 127 145 211 198 168 99 74 139 999
999 157 115 127 151 139 145 186 192 163 145 145 127 157 204 180 107 107 168 999
999 139 151 133 157 180 180 163 192 210 180 163 168 163 168 192 127 145 163 999
999 204 186 174 192 139 107 115 133 151 151 163 204 180 121 180 145 157 198 999
999 204 212 180 127 99 66 82 25 58 82 82 133 151 115 163 139 127 198 999
999 99 174 127 99 145 133 127 58 33 50 90 115 151 127 174 107 90 151 999
999 127 99 58 133 180 139 151 157 121 115 151 168 198 212 214 174 168 204 999
999 163 186 145 127 151 192 213 215 210 157 168 198 210 217 221 210 198 214 999
999 180 218 145 66 204 215 139 127 180 180 133 115 74 151 212 133 151 180 999
999 192 215 174 192 216 145 0 0 58 204 174 127 58 145 220 127 115 157 999
999 22 168 214 224 186 9 0 0 0 213 225 227 223 221 225 157 107 174 999
999 0 90 168 215 145 13 0 0 0 192 215 215 192 215 223 151 127 192 999
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999 0 90 127 186 133 19 9 0 0 163 145 33 6 145 215 133 139 174 999
999 0 33 145 180 163 0 9 0 0 192 139 127 107 151 215 139 139 192 999
999 16 151 215 216 180 0 3 0 0 212 219 225 223 221 218 90 99 174 999
999 186 215 168 192 213 82 6 0 58 215 215 212 198 215 219 74 25 151 999
999 192 133 0 22 198 180 25 25 1S1 139 41 25 74 168 216 115 74 145 999
999 204 107 74 74 16 127 99 82 50 25 25 82 168 168 211 133 163 204 999
999 198 121 204 174 22 66 74 25 16 82 157 168 151 180 168 74 163 213 999
999 115 139 186 204 133 133 145 121 121 163 174 139 121 151 139 74 107 163 999
999 127 145 115 157 139 192 204 192 168 168 145 145 121 157 168 127 127 151 999
999 145 157 151 168 168 186 186 186 174 127 99 157 192 157 133 121 115 121 999
999 163 157 145 133 133 168 198 198 186 145 82 163 174 139 99 121 115 121 999
999 163 157 145 163 168 168 186 163 163 121 50 151 180 99 74 127 99 139 999
999 168 139 121 192 210 139 121 121 157 174 66 66 66 41 127 157 99 121 999
999 157 145 174 192 127 58 41 133 212 214 133 90 90 58 145 186 90 66 999
999 151 186 145 82 41 107 151 163 157 157 151 163 139 90 127 133 41 22 999
999 145 107 41 74 139 163 151 163 163 121 127 163 163 127 115 90 127 127 999
999 99 82 127 174 157 121 107 145 163 133 121 82 74 115 115 99 115 127 999
999 115 168 157 127 145 151 174 127 121 107 41 25 25 16 6 3 9 19 999
999 168 168 127 139 180 174 157 74 50 13 0 0 0 0 0 0 0 0 999
999 145 145 180 186 139 99 22 0 0 0 0 0 0 0 0 0 0 0 999
999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
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E.2 Channel 2 Gray Values

999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
999 208 208 183 183 177 194 206 206 188 194 155 111 127 116 122 155 116 111 999
999 105 116 127 127 116 116 138 161 149 138 111 39 67 96 116 144 111 138 999
999 20 20 39 67 58 29 10 96 96 29 39 20 9 29 67 96 77 149 999
999 111 77 77 86 29 39 67 105 58 9 20 10 9 39 86 67 77 177 999
999 155 122 86 29 10 9 67 86 58 20 29 9 58 96 77 67 86 161 999
999 155 161 144 20 9 48 96 77 39 39 67 105 116 77 58 67 77 133 999
999 96 161 177 116 67 86 105 138 39 67 116 122 105 9 77 111 58 144 999
999 48 122 199 183 105 105 122 138 67 116 138 86 39 10 86 127 111 149 999
999 39 7 138 206 155 155 194 206 194 138 77 58 39 48 77 96 86 138 999
999 20 7 77 210 210 205 211 214 213 133 20 67 67 48 48 67 116 133 999
999 7 48 48 209 210 207 212 214 211 86 67 58 39 39 58 48 96 105 999
999 39 29 111 210 212 208 216 216 213 133 67 58 29 10 58 67 122 96 999
999 48 10 155 212 205 166 208 208 194 133 96 48 8 20 77 96 116 111 399
999 6 77 206 194 86 86 133 127 67 105 116 48 6 9 58 86 116 111 999
999 48 172 205 122 58 67 116 111 29 48 96 67 39 20 58 77 122 105 999
999 172 183 77 48 58 58 67 96 67 29 39 96 111 77 58 77 105 77 999
999 155 86 20 48 39 20 58 96 58 29 9 20 96 105 96 96 105 86 999
999 67 29 39 39 10 20 48 86 67 58 20 9 58 86 122 116 105 96 999
999 48 48 10 29 29 39 58 86 96 58 20 29 48 67 116 133 116 96 999
999 105 48 29 29 10 10 29 77 86 77 67 86 67 10 96 122 133 122 999
999 105 133 105 39 29 10 58 48 48 29 48 58 58 8 86 111 105 127 999
999 96 138 105 67 96 67 58 48 29 48 48 58 67 48 111 111 105 122 999
999 77 67 39 96 122 58 48 48 29 39 48 67 58 116 172 188 183 183 999
999 86 105 48 10 58 111 133 161 127 58 10 29 29 111 194 205 199 208 999
999 116 166 77 7 96 183 166 188 194 111 9 7 6 20 133 122 138 138 999
999 155 206 166 138 177 161 105 116 194 199 96 20 6 67 188 122 105 58 999
999 105 199 210 212 177 67 67 48 138 206 155 133 116 155 208 155 105 105 999
999 5 155 183 206 133 58 116 29 127 207 133 67 7 67 183 133 122 105 999
999 9 188 149 172 122 58 105 105 144 194 77 2 0 7 122 86 122 105 999
999 5 133 194 183 155 7 96 77 116 194 67 10 8 39 149 116 133 105 999
999 39 172 209 209 188 5 67 39 111 207 183 161 144 183 206 122 122 86 999
999 111 172 144 166 199 116 58 29 133 206 166 116 77 138 199 105 67 67 999
999 138 105 3 8 155 161 58 77 155 133 20 5 6 58 149 96 58 96 999
999 133 86 58 58 10 105 96 86 48 20 9 48 96 105 155 138 155 161 999
999 96 58 116 105 10 39 48 29 10 39 86 111 105 138 138 105 172 206 999
999 9 9 20 86 39 48 67 67 86 96 77 29 10 96 111 105 122 166 999
999 7 7 5 9 10 77 86 96 77 58 9 9 9 67 111 122 122 122 999
999 9 7 8 9 9 39 67 58 39 9 6 39 86 77 86 96 105 86 999
999 6 8 7 8 8 10 58 48 39 10 9 67 111 96 105 96 116 96 999
999 7 7 7 8 8 10 39 29 29 10 8 86 122 96 96 111 116 133 999
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999 10 7 6 10 39 20 10 20 39 58 10 20 48 67 127 138 105 127 999
999 58 20 10 29 29 8 8 58 116 111 39 10 48 39 122 161 96 77 999
999 77 105 39 9 10 29 77 58 58 58 86 96 77 39 77 105 29 29 999
999 122 86 9 8 67 86 67 48 67 67 116 144 144 116 96 105 116 122 999
999 96 58 67 86 67 67 58 77 122 127 155 166 172 194 172 161 155 161 999
999 58 67 58 67 77 111 155 138 149 155 138 149 155 138 138 133 127 166 999
999 105 86 58 116 138 155 161 144 144 105 29 20 39 9 10 58 48 48 999
999 122 111 144 183 149 138 77 48 67 9 29 58 96 10 48 58 48 29 999
999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
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E.3 Channel 3 Gray Values

999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
999 207 206 201 200 203 202 205 204 194 203 183 122 133 128 139 178 133 122 999
999 106 117 139 139 139 117 128 161 167 150 128 55 82 100 117 161 122 139 999
999 10 10 19 55 46 28 19 100 91 19 28 28 9 19 82 111 91 167 999
999 100 82 82 64 64 46 73 117 55 9 37 10 8 64 111 91 82 194 999
999 167 128 82 28 19 28 73 106 64 19 28 19 64 111 82 100 106 178 999
999 167 189 139 9 10 55 100 82 46 55 64 111 128 82 55 100 91 139 999
999 117 201 201 128 64 91 122 133 46 82 133 128 106 8 82 117 82 133 999
999 100 167 205 201 91 91 133 144 73 122 150 111 46 9 100 117 117 161 999
999 64 8 161 206 167 172 201 204 200 150 106 55 55 55 82 111 106 133 999
999 73 8 91 210 207 203 209 212 208 122 28 64 73 55 73 73 117 139 999
999 37 91 91 210 208 205 209 209 206 82 91 91 55 46 55 55 106 91 999
999 82 55 122 209 207 204 211 211 208 133 91 73 37 28 73 73 122 100 999
999 122 46 172 207 183 156 202 203 200 144 106 55 8 19 100 106 133 122 999
999 10 117 202 183 82 55 122 122 64 117 122 64 8 10 82 100 139 122 999
999 73 201 203 111 37 37 100 111 19 46 91 100 46 37 73 73 122 117 999
999 201 201 73 46 46 46 73 117 64 28 55 122 144 91 73 106 111 91 999
999 183 91 8 46 37 19 55 111 46 37 10 19 117 111 100 106 100 100 999
999 55 19 9 19 9 19 46 91 73 46 10 10 46 106 111 117 117 111 999
999 46 37 10 28 28 55 64 91 106 82 64 64 55 55 122 139 139 111 999
999 100 55 46 64 37 19 37 64 91 82 64 106 82 19 111 128 139 144 999
999 111 139 106 46 28 19 73 46 64 55 64 73 73 10 100 106 122 150 999
999 73 133 106 91 100 73 73 28 37 46 73 64 82 64 122 111 111 150 999
999 91 64 55 111 117 55 55 55 28 37 46 73 91 128 183 194 201 202 999
999 106 106 64 19 46 117 161 183 133 46 28 37 64 117 200 201 203 205 999
999 117 172 82 6 111 202 201 202 201 111 9 8 6 28 144 122 133 144 999
999 172 205 167 156 201 172 106 133 204 203 106 37 8 82 189 117 100 73 999
999 111 203 208 212 201 73 106 73 183 209 178 156 133 172 207 156 106 106 999
999 6 183 201 205 150 82 156 73 161 209 156 91 8 73 189 133 122 128 999
999 10 201 150 161 128 73 128 133 161 201 82 2 0 8 117 100 139 117 999
999 5 122 178 183 183 19 133 111 122 203 82 28 8 37 167 122 150 128 999
999 46 172 204 205 201 19 106 91 117 206 201 183 167 183 205 139 133 117 999
999 128 183 139 178 205 161 82 55 161 206 189 133 100 150 201 111 82 111 999
999 156 91 2 7 156 194 100 111 194 150 19 5 7 73 167 91 82 106 999
999 150 82 46 46 10 128 117 100 55 37 8 46 111 100 161 139 172 178 999
999 111 55 111 106 8 37 55 28 10 64 117 111 111 144 156 117 189 205 999
999 8 9 37 82 46 46 64 64 100 106 100 37 19 82 117 111 133 183 999
999 8 9 6 8 37 100 111 106 82 55 28 28 10 55 122 117 139 139 999
999 28 9 9 19 28 64 55 55 37 10 8 37 106 91 106 100 111 100 999
999 10 9 8 8 7 28 55 73 64 19 8 91 117 106 100 111 128 111 999
999 8 8 8 8 10 37 55 55 46 10 8 91 139 111 111 128 133 144 999
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999 28 9 8 37 46 28 28 37 64 82 19 28 55 82 144 161 122 133 999
999 73 46 37 55 19 9 9 82 144 139 64 28 55 46 133 172 111 100 999
999 111 122 55 9 19 55 100 82 73 82 106 111 100 37 91 100 28 10 999
999 133 91 9 28 100 100 73 82 82 73 122 156 156 122 111 82 117 128 999
999 100 82 91 100 82 82 64 82 122 133 178 183 194 205 201 172 161 178 999
999 91 117 91 55 91 111 172 156 172 189 167 189 178 183 167 150 178 200 999
999 122 117 100 133 156 167 167 161 156 122 64 64 64 10 28 73 64 73 999
999 128 128 156 194 161 156 91 73 73 19 46 82 111 28 100 91 82 64 999

999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999
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Appendix F. SPOT Subimage Gray Value Count and Program

In this appendix are contained the gray value pixel counts by channel and the

FORTRAN program created to generate this list. The FORTRAN program created

this list by reading the pixel values in Appendix E.

F.1 Channel 1 Gray Value Count

CHANNEL 1 PIXEL COUNT BY GRAY VALUE

FOR GRAY VALUE = 0. THE COUNT IS 58
FOR GRAY VALUE = 3.00000 THE COUNT IS 2
FOR GRAY VALUE = 6.00000 THE COUNT IS 4
FOR GRAY VALUE = 9.00000 THE COUNT IS 4
FOR GRAY VALUE = 13.0000 THE COUNT IS 2
FOR GRAY VALUE = 16.0000 THE COUNT IS 5
FOR GRAY VALUE = 19.0000 THE COUNT IS 2
FOR GRAY VALUE = 22.0000 THE COUNT IS 6
FOR GRAY VALUE = 25.0000 THE COUNT IS 61
FOR GRAY VALUE = 33.0000 THE COUNT IS 4
FOR GRAY VALUE = 41.0000 THE COUNT IS 7
FOR GRAY VALUE = 50.0000 THE COUNT IS 4
FOR GRAY VALUE = 58.0000 THE COUNT IS 11
FOR GRAY VALUE = 66.0000 THE COUNT IS 7
FOR GRAY VALUE = 74.0000 THE COUNT IS 19
FOR GRAY VALUE = 82.0000 THE COUNT IS 17
FOR GRAY VALUE = 90.0000 THE COUNT IS 15
FOR GRAY VALUE = 99.0000 THE COUNT IS 22
FOR GRAY VALUE = 107.000 THE COUNT IS 23
FOR GRAY VALUE = 115.000 THE COUNT IS 26
FOR GRAY VALUE = 121.000 THE COUNT IS 29
FOR GRAY VALUE = 127.000 THE COUNT IS 44
FOR GRAY VALUE = 133.000 THE COUNT IS 30
FOR GRAY VALUE = 139.000 THE COUNT IS 42
FOR GRAY VALUE = 145.000 THE COUNT IS 47
FOR GRAY VALUE = 151.000 THE COUNT IS 42
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FOR GRAY VALUE = 157.000 THE COUNT IS 42
FOR GRAY VALUE = 163.000 THE COUNT IS 41
FOR GRAY VALUE = 168.000 THE COUNT IS 42
FOR GRAY VALUE = 174.G00 THE COUNT IS 35
FOR GRAY VALUE = 180.000 THE COUNT IS 32
FOR GRAY VALUE = 186.000 THE COUNT IS 22
FOR GRAY VALUE = 192.000 THE COUNT IS 38
FOR GRAY VALUE = 198.000 THE COUNT IS 17
FOR GRAY VALUE = 204.000 THE COUNT IS 21
FOR GRAY VALUE = 210.000 THE COUNT IS 13
FOR GRAY VALUE = 211.000 THE COUNT IS 9
FOR GRAY VALUE = 212.000 THE COUNT IS 6
FOR GRAY VALUE = 213.000 THE COUNT IS 9
FOR GRAY VALUE = 214.000 THE COUNT IS 9
FOR GRAY VALUE = 215.000 THE COUNT IS 18
FOR GRAY VALUE = 216.000 THE COUNT IS 4
FOR GRAY VALUE = 217.000 THE COUNT IS 2
FOR GRAY VALUE = 218.000 THE COUNT IS 3
FOR GRAY VALUE = 219.000 THE COUNT IS 3
FOR GRAY VALUE = 220.000 THE COUNT IS 1
FOR GRAY VALUE = 221.000 THE COUNT IS 4
FOR GRAY VALUE = 222.000 THE COUNT IS 1
FOR GRAY VALUE = 223.000 THE COUNT IS 3
FOR GRAY VALUE = 224.000 THE COUNT IS 2
FOR GRAY VALUE = 225.000 THE COUNT IS 3
FOR GRAY VALUE = 227.000 THE COUNT IS 1
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F.2 Channel 2 Gray Value Count

CHANNEL 2 PIXEL COUNT BY GRAY VALUE

FOR GRAY VALUE = 0. THE COUNT IS 1
FOR GRAY VALUE = 2.00000 THE COUNT IS 1
FOR GRAY VALUE = 3.00000 THE COUNT IS 1
FOR GRAY VALUE = 5.00000 THE COUNT IS 5
FOR GRAY VALUE = 6.00000 THE COUNT IS 8
FOR GRAY VALUE = 7.00000 THE COUNT IS 16
FOR GRAY VALUE = 8.00000 THE COUNT IS 14
FOR GRAY VALUE = 9.00000 THE COUNT IS 28
FOR GRAY VALUE = 10.00000 THE COUNT IS 33
FOR GRAY VALUE = 20.0000 THE COUNT IS 26
FOR GRAY VALUE = 29.0000 THE COUNT IS 38
FOR GRAY VALUE = 39.0000 THE COUNT IS 41
FOR GRAY VALUE = 48.0000 THE COUNT IS 45
FOR GRAY VALUE = 58.0000 THE COUNT IS 59
FOR GRAY VALUE = 67.0000 THE COUNT IS 58
FOR GRAY VALUE = 77.0000 THE COUNT IS 39
FOR GRAY VALUE = 86.0000 THE COUNT IS 39
FOR GRAY VALUE = 96.0000 THE COUNT IS 48
FOR GRAY VALUE = 105.0000 THE COUNT IS 47
FOR GRAY VALUE = 111.000 THE COUNT IS 28
FOR GRAY VALUE = 116.000 THE COUNT IS 35
FOR GRAY VALUE = 122.000 THE COUNT IS 31
FOR GRAY VALUE = 127.000 THE COUNT IS 12
FOR GRAY VALUE = 133.000 THE COUNT IS 22
FOR GRAY VALUE = 138.000 THE COUNT IS 26
FOR GRAY VALUE = 144.000 THE COUNT IS 11
FOR GRAY VALUE = 149.000 THE COUNT IS 9
FOR GRAY VALUE = 155.000 THE COUNT IS 24
FOR GRAY VALUE = 161.000 THE COUNT IS 13
FOR GRAY VALUE = 166.000 THE COUNT IS 9
FOR GRAY VALUE = 172.000 THE COUNT IS 9
FOR GRAY VALUE = 177.000 THE COUNT IS 5
FOR GRAY VALUE = 183.000 THE COUNT IS 13
FOR GRAY VALUE = 188.000 THE COUNT IS 6
FOR GRAY VALUE = 194.000 THE COUNT IS 13
FOR GRAY VALUE = 199.000 THE COUNT IS 6
FOR GRAY VALUE = 205.000 THE COUNT IS 4
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FOR GRAY VALUE = 206.000 THE COUNT IS 11

FOR GRAY VALUE = 207.000 THE COUNT IS 3
FOR GRAY VALUE = 208.000 THE COUNT IS 7

FOR GRAY VALUE = 209.000 THE COUNT IS 3

FOR GRAY VALUE = 210.000 THE COUNT IS 5
FOR GRAY VALUE = 211.000 THE COUNT IS 2

FOR GRAY VALUE = 212.000 THE COUNT IS 4

FOR GRAY VALUE = 213.000 THE COUNT IS 2
FOR GRAY VALUE = 214.000 THE COUNT IS 2

FOR GRAY VALUE = 216.000 THE COUNT IS 2

250



F.3 Channel 3 Gray Value Count

CHANNEL 3 PIXEL COUNT BY GRAY VALUE

FOR GRAY VALUE = 0. THE COUNT IS 1
FOR GRAY VALUE = 2.00000 THE COUNT IS 2
FOR GRAY VALUE = 5.00000 THE COUNT IS 2
FOR GRAY VALUE = 6.00000 THE COUNT IS 4
FOR GRAY VALUE = 7.00000 THE COUNT IS 3
FOR GRAY VALUE = 8.00000 THE COUNT IS 27
FOR GRAY VALUE = 9.00000 THE COUNT IS 17
FOR GRAY VALUE = 10.00000 THE COUNT IS 21
FOR GRAY VALUE = 19.0000 THE COUNT IS 28
FOR GRAY VALUE = 28.0000 THE COUNT IS 32
FOR GRAY VALUE = 37.0000 THE COUNT IS 28
FOR GRAY VALUE = 46.0000 THE COUNT IS 36
FOR GRAY VALUE = 55.0000 THE COUNT IS 45
FOR GRAY VALUE = 64.0000 THE COUNT IS 38
FOR GRAY VALUE = 73.0000 THE COUNT IS 41
FOR GRAY VALUE = 82.0000 THE COUNT IS 47
FOR GRAY VALUE = 91.0000 THE COUNT IS 39
FOR GRAY VALUE = 100.0000 THE COUNT IS 41
FOR GRAY VALUE = 106.000 THE COUNT IS 33
FOR GRAY VALUE = 111.000 THE COUNT IS 44
FOR GRAY VALUE = 117.000 THE COUNT IS 34
FOR GRAY VALUE = 122.000 THE COUNT IS 32
FOR GRAY VALUE = 128.000 THE COUNT IS 20
FOR GRAY VALUE = 133.000 THE COUNT IS 26
FOR GRAY VALUE = 139.000 THE COUNT IS 21
FOR GRAY VALUE = 144.000 THE COUNT IS 10
FOR GRAY VALUE = 150.000 THE COUNT IS 12
FOR GRAY VALUE = 156.000 THE COUNT IS 16
FOR GRAY VALUE = 161.000 THE COUNT IS 15
FOR GRAY VALUE = 167.000 THE COUNT IS 14
FOR GRAY VALUE = 172.000 THE COUNT IS 12
FOR GRAY VALUE = 178.000 THE COUNT IS 10
FOR GRAY VALUE = 183.000 THE COUNT IS 16
FOR GRAY VALUE = 189.000 THE COUNT IS 7
FOR GRAY VALUE = 194.000 THE COUNT IS 7
FOR GRAY VALUE = 200.000 THE COUNT IS 5
FOR GRAY VALUE = 201.000 THE COUNT IS 21

251



FOR GRAY VALUE = 202.000 THE COUNT IS 6
FOR GRAY VALUE = 203.000 THE COUNT IS 9
FOR GRAY VALUE = 204.000 THE COUNT IS 5
FOR GRAY VALUE = 205.000 THE COUNT IS 11
FOR GRAY VALUE = 206.000 THE COUNT IS 5
FOR GRAY VALUE = 207.000 THE COUNT IS 5
FOR GRAY VALUE = 208.000 THE COUNT IS 4
FOR GRAY VALUE = 209.000 THE COUNT IS 6
FOR GRAY VALUE = 210.000 THE COUNT IS 2
FOR GRAY VALUE = 211.000 THE COUNT IS 2
FOR GRAY VALUE = 212.000 THE COUNT IS 2
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F.4 FORTRAN Program: Gray Value Count

* GRAY VALUE COUNT PROGRAM *

* AUTHOR: CAPT JOHN M. AMRINE *

* CREATED: NOV 1992 *

* THIS PROGRAM READS THE GRAY VALUES OF THE THREE IMAGES (CHANNELS 1-3) *

* AND OUTPUTS THE GRAY VALUE COUNT BY CHANNEL. CHANNEL 1 IS CONTAINED IN *
* ROWS 1-50, CHANNEL 2 IN ROWS 51-100 AND CHANNEL 3 IN ROWS 101-150. EACH *
* CHANNEL HAS A BORDER COMPOSED OF 999s. THIS IS NOT A REQUIREMENT FOR THE*
* THE SUCCESSFUL RUNNING OF THIS PROGRAM BUT RATHER A REQUIREMENT FOR *
* ADDITIONAL IMAGE PROCESSING THAT WILL OCCUR OUTSIDE OF THIS PROGRAM. THE *

* 999s ARE NOT COUNTED IN THIS PROGRAM SINCE THE ARE NOT PART OF THE ACTUAL*
* IMAGE. THE DATA OF THE THREE CHANNELS ARE READ INTO THE PROGRAM VIA THE *
* UNIX COMMAND "a.out < filename.ext" (QUOTES ARE NOT INCLUDED IN THE *

* COMMAND). THIS PROGRAM CAN BE EASILY EXTENDED TO DATA SETS COMPOSED OF *

* MORE OR FEWER THAN THREE CHANNELS. THIS PROGRAM ASSUMES EIGHT BIT DATA. *

"* VARIABLES: *

"* COLS: NUMBER OF COLUMNS IN DATA SET *

"* ROWS: NUMBER OF ROWS IN DATA SET *
"* I: COUNTER FOR ROWS *

"* J: COUNTER FOR COLUMNS *

"* COUNT: COUNTER FOR NUMBER OF A PARTICULAR GRAY VALUE *
"* GRAY: GRAY VALUE *

"* MAX: MAXIMUM GRAY VALUE ALLOWED *

"* ARRAYl: 150 X 20 ARRAY CONTAINING THE GRAY VALUES BY CHANNEL *

INTEGER COLS, ROWS, I, J, COUNT
REAL GRAY, MAX
REAL ARRAY1(150,20)

* Data will be read from external data file

READ *, ROWS, COLS

* Fill the real array
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DO 10 I = 1, ROWS
READ *, (ARRAY1 (I, J), J = 1, COLS)

10 CONTINUE

* Subroutine to get count of individual pixel values in Channel 1

* Print title for Channel 1
PRINT
PRINT *, CHANNEL 1 PIXEL COUNT BY GRAY VALUE'
PRINT -, ' .....- -

PRINT

* INITIALIZE MAX, GRAY, AND COUNT

MAX = 255.0
GRAY = 0.00

130 COUNT = 0
DO 110 I = 2, 49

DO 120 J = 2, COLS - 1
IF (ARRAYI(I, J) .LT. GRAY+.0001 .AND. ARRAYI(I,J)

+ .GT. GRAY-.0001) THEN
COUNT = COUNT + 1

ENDIF
120 CONTINUE
110 CONTINUE

IF (COUNT .GT. 0)
"+ PRINT*, ' FOR GRAY VALUE = ', GRAY,' THE COUNT IS '

"+ COUNT

GRAY = GRAY + 1.0

IF (GRAY .LE. MAX) GOTO 130

* Print title for Channel 2
PRINT
PRINT *, ' CHANNEL 2 PIXEL COUNT BY GRAY VALUE'
PRINT *, - - - - - - - -

PRINT

* Subroutine to get count of individual pixel values in Channel 2
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* INITIALIZE MAX, GRAY, AND COUNT

MAX = 255.0

GRAY = 0.00
230 COUNT = 0

DO 210 I = 52, 99
DO 220 J = 2, COLS - 1

IF (ARRAYI(I, J) .LT. GRAY+.0001 .AND. ARRAYI(I,J)
+ .GT. GRAY-.0001) THEN

COUNT = COUNT + I
ENDIF

220 CONTINUE
210 CONTINUE

IF (COUNT .GT. 0)
"+ PRINT*, ' FOR GRAY VALUE = ', GRAY,' THE COUNT IS ',

"+ COUNT

GRAY = GRAY + 1.0

IF (GRAY .LE. MAX) GOTO 230

"* Print title for Channel 3
PRINT *

PRINT *, ' CHANNEL 3 PIXEL COUNT BY GRAY VALUE'

PRINT *, '- - - - - - -

PRINT *

"* Subroutine to get count of individual pixel values in channel 3

"* INITIALIZE MAX, GRAY, AND COUNT

MAX = 255.0
GRAY = 0.00

330 COUNT = 0
DO 310 I = 102, 149

DO 320 J = 2, COLS - 1
IF (ARRAYI(I, J) .LT. GRAY+.0001 .AND. ARRAY1(I,J)

+ .GT. GRAY-.0001) THEN
COUNT = COUNT + 1

ENDIF
320 CONTINUE
310 CONTINUE

IF (COUNT .GT. 0)
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+ PRINT *, ' FOR GRAY VALUE = ', GRAY,' THE COUNT IS '

+ COUNT

GRAY = GRAY + 1.0

IF (GRAY .LE. MAX) GOTO 330

END
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Appendix G. SPOT Subimage Water Regions and Program

In this appendix are contained the water regions based on spectral vaulues

alone. Each channel of data has been filtered using the spectral range for water

identified in Chapter 4. In addition to identifying the bodies of water, other nonwater

areas were characterized as water. This was particularily evident in Channels 2 and

3. The reason for this labeling of nonwater areas as water is that the other areas were

spectrally similar to water. In these character representations, the pixels within the

water spectral range have been labelled with a W. The 999 border has been labeled

with an X and the other gray values with a space.
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G. 1 Channel 1 Water Regions

CHARACTER REPRESENTATION OF CHANIEL I MAER

I x
I I
I I
x I
x I
IV I

xmvw x

Ivu I

1MM I
IV I
I I
I I
I I
I I

II
I I
I I
I I

IV MMMV I
IV MMIIM I
Iv MMvv V I

I MM I

I Mv I
I MM I

I I
I I
I I
I I
I I
I I
I VI

I I
I I
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G.2 Channel 2 Water Regions

CHARACTERt REPRESENTATION OF CHANNEL 2 WATER
------------------------------------------

Iuvwywwwuwuuuiiuwuuww

xwuuwuuuwwwrnwvvwwuwu
1vW uuvwvwuuuuuwvvwu
x~v vvwuwuwvvwmxuw

11111 vv IVIwWIIvx

11VW 1 111111111
xvI WW v MNNWWWWWX

IW vwwuuwwwwwwvwwuw

x wiewvwwuiuvvvrnwuwvl

xuwuuyiiwwuuwyvwywuwx
Iwvviuwwuwvwuiwww Ix
Iuwvvwuuuwwuwwvw 1v

Iv Vu VWV W11 1111
IV 111 11111111X

IV V 11111 1 111111

IV 11 11W 111 1111

Iwuwwwvuuwuwuwvwuu 1

Iuwvwvwvwvwwuwywwyuy

Iwvwwuwuuiwwuuyuywuwl

Iunwvvvwvwwuiuwwvugwlv
INN wvwuN wwmuivwvlv
Iwuvvwwwyuwwwuu Wuuw
Iwuuuvwwuwwuwwwwv VI

vWvvu W WuW W WW Wv WUV
Iwwwvvwwwwwwwwwvwwwuw
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G.3 Channel 3 Water Regions

CHARACTER REPRESENTATION OF CHANNEL 3 WATER

I W V WWWWWMNWUWMx

IvwVVWuuWuwwuwwuwu

Iwwuwwwyuuvwwwvuwuvw
Iii WWUWWWWUWWWWVUUX

hIiiv iihuuuuuuvlW~

Xiii U wUWWMMWWWUA

XIV wwwVVwiwuuwVWux
I VwuWuuwuWuuwwwwui
xMUWVVWW.MWVbUWWUWUx

IuwwwwwwuwuwuwuwuuuX
xVwuwwwV~Wwuwwwuwwu
xWyuuyuwuvwvWWVWuwui
xwwwrVwwuvwuVVWwwwwVx
I NUN UNUNUN N W NNNWyx

XmwuwuuuuuwwwuVWV I
XNNNVWNNNNNNWVWN I
IWuul~l iihiiuulflull
IV iii Viii iiuiiuuuuv
IV huhW Wvii uuix
xvii VuvvV vuvivuvVu
IV uuiiulhii ii uuuuui
huuuuuuuiii uuuuuuiil
iii Viii vii uwiX
iWviVV WVii Viii miii
XIii NNNWNNNNNNUNNN

1~
XUNNNNNNNNNNNNNNNNNx

INNNNNNNUNNNNNNNNN I
XNNNNNNNNNNNNNUNNNNI

INWNNNNNNNNNUNNNNNNX

xNNNNNNNWNNUNNNNNNNA

xNNNNNNNUNNNUNNNNUNI

INNNNNNN~wNNNNNNNNNN

xNNNNNIINNNNNNNNNNNNI

INNNN~vWNNWNNNNNNNV

XNNNNNWNNVVVWNNNNWNA

xNNNNNNNUNNNNNNNNNNI

XVVviiVViiuVuuuuii iuhx
IUMNNNNWUNNNNNNNNNIW
XNUNNNNNNNNNNNUNNUNI

xMNNMNNUNNNVNNNUNIW~

XIXIXXIXXIIxXxxxxxxx
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G.4 FORTRAN Program: Characterization of Water

* SPECTRAL FILTERING PROGRAM *

* Author: John M. A•nrine *

* Created: Nov 1992 *
* **************************************************************************

* PROGRAM READS IN THE SPECTRAL VALUES OF AN IMAGE AND CONVERTS THE GRAY *

* VALUE TO A CHARCTER. IN THIS PROGRAM, THE SPECTRAL FILTER WAS SET TO *
* WATER CHANNEL ONE SPOT IMAGERY. THE PIXELS WITH A GRAY VALUE IN THE *

* WATER SPECTRAL RANGE (0-22) WERE SET TO W. THE BORDER OF 999s IN THE *
* INPUT FILE WAS SET TO X. THE REMAINING PIXELS WERE DESIGNATED BY A *

* SPACE. THIS PROGRAM CAN BE EASILY CHANGED TO FILTER FOR OTHER OBJECTS *

* IF THE SPECTRAL RANGE IS KNOWN. THIS PROGRAM WAS MODIFIED TO PROCESS *

* CHANNELS SPOT CHANNELS TWO AND THREE. THE SPECTRAL RANGE FOR WATER IN *

* THESE CHANNELS ARE (5-155) AND (5-200), RESPECTIVELY. *

* Variables: *
* I :Counter for rows *

* J :Counter for columns *
* COLS :Max number of columns *

* ROWS :Max number of rows *

* ARRAY: Input matrix (150 X 20) *
* ARRAY6: Output Character Matrix *

INTEGER COLS, ROWS, I, J
INTEGER ARRAY (150,20)
CHARACTER ARRAY6 (50,20)

* Files where output will be stored. To activate this line,
* remove the * from the OPEN line of code. The * will also have
* to be removed from the WRITE line and the CLOSE line. Add an *

* to the PRINT 910 line since both the WRITE and PRINT can not both
* be active.

* OPEN (UNIT = 28, FILE = 'image8')

"* Data will be read from external data file
READ *, ROWS, COLS

"* Fill the integer array
DO 10 I = 1, ROWS
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READ *, (ARRAY (I, J), J = 1, COLS)

10 CONTINUE

* Subroutine to plot W characters based on Array gray values

* Print a title for Channel I water representation
PRINT *

PRINT *, 'CHARACTER REPRESENTATION OF CHANNEL 1 WATER'

PRINT *, '-----------------------------------------------------
PRINT

DO 610 I = 1, 50

DO 620 J = 1, COLS

IF (ARRAY (I,J) .GE. 999) THEN

ARRAY6 (I,J) = 'XI

ELSE IF (ARRAY (I,J) .LT. 256 .AND. ARRAY (I,J)
.GE. 23) THEN

ARRAY6 (I,J) =

ELSE

ARRAY6 (I,J) = IWI

ENDIF
620 CONTINUE
610 CONTINUE

DO 630 I = 1, 50
PRINT 910, (ARRAY6 (I,J), J = 1, COLS)

* WRITE (28, 910) (ARRAY6 (I,J), J = 1, COLS)

630 CONTINUE

910 FORMAT (IX, 50A)

* CLOSE (28)

END
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Appendix H. GAMS Program with Modified Objective Function

In this appendix is contained a modified objective function to bias selection of

pixels that are close to the mean gray value of a given land cover type. The objective

function also contains lambda weights to perform multicriteria optimization of two

channels simultaneously. The objective fuction was not successfully run in GAMS.

GAMS 2.20 VAX VMS 15-NOV-1992 02:44 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1
2 SETS
3 I PIXEL LOCATION / 1*49 /
4 K NUMBER OF SUBREGIONS TO FIND I /
5 G IMAGING CHANNEL / A, B I
6 ALIAS(I,J)
7 SETS
8 ADJ(I,J) ADJACENCY MATRIX
9 /1.(2,8)

10 2.(1,3,9)
11 3.(2,4,10)
12 4.(3,5,11)
13 5.(4,6,12)
14 6.(5,7,13)
15 7.(6,14)
16 8.(1,9,15)
17 9.(2,8,10,16)
18 10.(3,9,11,17)
19 11.(4,10,12,18)
20 12.(5,11,13,19)
21 13.(6,12,14,20)
22 14.(7,13,21)
23 15.(8,16,22)
24 16.(9,15,17,23)
25 17.(10,16,18,24)
26 18.(11,17,19,25)
27 19.(12.18,20,26)
28 20.(13,19,21,27)
29 21.(14,20,28)
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30 22.(15,23,29)

31 23.(16,22,24,30)
32 24.(17,23,25,31)

33 25.(18,24,26,32)
34 26.(19,25,27,33)

35 27.(20,26,28,34)
36 28.(21,27,35)

37 29.(22,30,36)
38 30.(23,29,31,37)
39 31.(24,30,32,38)

40 32.(25,31,33,39)
41 33.(26,32,34,40)
42 34.(27,33,34,41)
43 35.(28,34,42)

44 36.(29,37,43)
45 37.(30,36,38,44)
46 38.(31,37,39,45)

47 39.(32,38,40,46)
48 40.(33,39,41,47)
49 41.(34,40,42,48)

50 42.(35,41,49)

51 43.(36,44)
52 44.(37,43,45)

53 45.(38,44,46)
54 46.(39,45,47)

GAMS 2.20 VAX VMS 15-NOV-1992 02:44 PAGE 2

GENERAL ALGEBRAIC MODELING SYSTEM

COMPILATION

55 47.(40,46,48)
56 48.(41,47,49)

57 49.(42,48)/
58
59 TABLE
60
61 C(I,G) COST OF EACH PIXEL
62
63 A B
64
65 1 0 0

66 2 0 0

67 3 0 0

68 4 0 0
69 5 0 0
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70 6 0 0
71 7 0 0
72 8 0 0
73 9 192 48
74 10 163 77
75 11 115 48
76 12 145 39
77 13 151 20
78 14 0 0
79 15 0 0
80 16 145 39
81 17 222 149
82 18 230 161
83 19 210 58
84 20 157 9
85 21 0 0
86 22 0 0
87 23 180 58
88 24 240 183
89 25 249 188
90 26 221 96
91 27 210 29
92 28 0 0
93 29 0 0
94 30 186 20
95 31 216 96

96 32 216 67
97 33 198 10

98 34 174 9
99 35 0 0

100 36 0 0
101 37 145 8
102 38 139 9
103 39 145 7
104 40 168 7
105 41 168 8

106 42 0 0
107 43 0 0
108 44 0 0

GAMS 2.20 VAX VMS 15-NOV-1992 02:44 PAGE 3
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

109 45 0 0
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110 46 0 0
111 47 0 0
112 48 0 0
113 49 0 0;
114
115
116
117
118
119 VARIABLES
120 Z TOTAL COST OF ACQUIRED PIXELS
121 X(I,K) BINARY VARIABLE
122 P(I,J,K) BINARY VARIABLE
123 N(I,JK) BINARY VARIABLE
124
125 BINARY VARIABLES X,P,N;
126
127 EQUATIONS
128 OBJ OBJECTIVE FUNCTION
129 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
130 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
131 C5(I) CONSTRAINT FOR SUBREGIONS;
132
133 OBJ..
134 Z =E= SUM((I,K), 0.1/(ABS(240 - C(I,"A")*X(I,K)) + 1)
135 + 0.9/(ABS(180 - C(I,"B")*X(I,K)) + 1));
136
137
138 C2(I,JK) $ADJ(I,J)..
139 X(I,K) - X(J,K) - P(I,J,K) + N(I,JK) =E= 0;
140
141
142 C4(I,J,K) $ADJ(I,J)..
143 P(I,JK) + N(I,J,K) =L= 1;

144
145 C5(I)..

146 SUM(K, X(IK)) =L= 1;
147
148 X.FX(I,"l")$(C(I,"A") LT 240 OR C(I,"A") GT 249) = 0;
149 X.FX(I,"I")$(C(I,"B") LT 180 OR C(I,"B") GT 190) = 0;
150
151 MODEL SUBREGION /ALL/;
152
153
154 SOLVE SUBREGION USING MIP MAXIMIZING Z;
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$51,256
**** THE FOLLOWING NIP ERRORS WERE DETECTED IN MODEL SUBREGION:
**** 51 IN EQUATION OBJ .. ENDOG ARGUMENT(S) IN FUNCTION
**** 51 IN EQUATION OBJ °. ENDOG ARGUMENT(S) IN FUNCTION

155
156
157 DISPLAY X.LP.L,N.L,Z.L;
158
159

GAMS 2.20 VAX VMS 15-NOV-1992 02:44 PAGE 5
GENERAL ALGEBRAIC MODELING SYSTEM
ERROR MESSAGES

51 ENDOGENOUS FUNCTION ARGUMENT(S) NOT ALLOWED IN LINEAR MODELS
256 ERROR(S) IN ANALYZING SOLVE STATEMENT. MORE DETAIL APPEARS

BELOW THE SOLVE STATEMENT ABOVE

**** FILE SUMMARY

INPUT GS092D: [JAMRINE] PRAC2. GMS; 1
OUTPUT GS092D: [JAMRINE]PRAC2.LIS;1

**** USER ERROR(S) ENCOUNTERED

COMPILATION TIME = 0.810 SECONDS
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Appendix I. GAMS Program: Three-Channel Filter

In this appendix, a three channel filter was performed on the SPOT subimage.

The three filters for the gray values were (0-22) for Channel 1, (5-155) for Channel 2,

and (5-200) for Channel 3. In the objective function, no lambda weights were used

since each channel was equal in weight. No area or border length constraint was

used since I wanted to locate all the water regions based on the spectral information

contained in the three channels. In the character representation of water, the water

areas have been labelled with a W and the other pixels with a space. The 999 border

is replaced by an X border.

1.1 GAMS Program to Locate Water Regions

GAMS 2.20 VAX VMS 17-NOV-1992 19:53 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
C0MPILATION

1
2
3 SETS
4 I PIXEL LOCATION / 1*1000 /
5 K NUMBER OF SUBREGIONS TO FIND / I /
6 G IMAGING CHANNEL / A, B, C I;
7
8 ALIAS (l,J)
9 SETS

10 ADJ (I,J) ADJACENCY MATRIX
11 /A. (2,21)

Remaining 999 entries for adjaceny matrix deleted to save space.

1012 TABLE
1013
1014 C(IG) COST OF EACH PIXEL
1015
1016 A B C
1017
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1018 1 999 999 99S
Remaining 999 entries for cost matrix deleted to save space.

2023
2024 VARIABLES
2025 Z TOTAL COST OF ACQUIRED PIXELS
2026 X(I,K) BINARY VARIABLE
2027 P(I,J,K) BINARY VARIABLE
2028 N(I,JK) BINARY VARIABLE
2029
2030 BINARY VARIABLES X,PN;
2031
2032 EQUATIONS
2033 OBJ OBJECTIVE FUNCTION
2034 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
2035 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
2036 C5(I) CONSTRAINT FOR SUBREGIONS;
2037
2038 OBJ
2039 Z =E= SUM((I,KG), C(I,G)*X(I,K));
2040
2041 C2(I,JK) $ADJ(I,J)
2042 X(IK) - X(J,K) - P(I,J,K) + N(IJ,K) =E= 0;
2043
2044 C4(I,J,K) $ADJ(IJ)
2045 P(I,J,K) + N(I,J,K) =L= 1;
2046
2047 C5(I)
2048 SUM(K, X(I,K)) =L= 1;
2049
2050
2051
2052 X.FX(I,"t")$(C(I,"A") GT 22) = 0;

GAMS 2.20 VAX VMS 17-NOV-1992 19:53 PAGE 39
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

2053 X.FX(I,"I1")$(C(I,"B") LT 5 OR C(I,"B") GT 155) = 0;
2054 X.FX(I,"I")$(C(I,"C") LT 5 OR C(I,"C") GT 200) = 0;
2055
2056
2057 MODEL SUBREGION /ALL/;
2058
2059 OPTIONS ITERLIM = 5000, RESLIM = 5000, WORK = 25000;
2060
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2061 SOLVE SUBREGION USING NIP MAXIMIZING Z;

2062

2063 DISPLAY X.LP.LN.LZ.L;

2064

2065

2066

GANS 2.20 VAX VMS 17-NOV-1992 19:53 PAGE 54

G E N E R A L A L G E B R A I C M 0 D E L I N G S Y S T E M

MODEL STATISTICS SOLVE SUBREGION USING NIP FROM LINE 2061

MODEL STATISTICS

BLOCKS OF EQUATIONS 4 SINGLE EQUATIONS 8721

BLOCKS OF VARIABLES 4 SINGLE VARIABLES 8721

NON ZERO ELEMENTS 25161 DISCRETE VARIABLES 7800

GENERATION TIME - 79.690 SECONDS

EXECUTION TIME 82.310 SECONDS

GANS 2.20 VAX VMS 17-NOV-1992 20:41 PAGE 55

G E N E R A L A L G E B R A I C N 0 D E L I N G S Y S T E M

SOLUTION REPORT SOLVE SUBREGION USING NIP FROM LINE 2061

S 0 L V E S U N M A R Y

MODEL SUBREGION OBJECTIVE Z

TYPE NIP DIRECTION MAXIMIZE

SOLVER ZOOM FROM LINE 2061

SOLVER STATUS 2 ITERATION INTERRUPT

MODEL STATUS 9 INTERMEDIATE NON-INTEGER

OBJECTIVE VALUE 11710.0000

RESOURCE USAGE, LIMIT 1345.760 6000.000

ITERATION COUNT, LIMIT 2681 5000

Z 0 0 M / X M P --- Version 2.1 Oct 1988

Courtesy of Dr Roy E. Marsten,

Department of Management Information Systems,

University of Arizona,

Tucson Arizona 86721, U.S.A.
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PROBLEM SPECIFICATIONS

BEGIN
HEURISTIC NO
DIVE NO

END
Work space needed (estimate) -- 923463 words.
Work space available -- 923463 words.

ZOOM: Due to the model status, the following
solution is probably meaningless.

The branch and bound tree contained 480 nodes (max. 25000 nodes).

Iterations: Initial LP 1180, Time: 325.410
Heuristic 0, 1.70996
Branch and bound 1501, 984.340
Final LP 0, O.O00000E+00

GAMS 2.20 VAX VMS 17-NOV-1992 20:41 PAGE 406
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

2063 VARIABLE X.L BINARY VARIABLE

1

142 1.000
162 1.000
163 1.000
182 1.000
183 1.000
184 1.000
202 1.000
203 1.000
204 1.000
222 1.000
223 1.000
224 1.000
242 1.000
243 1.000
244 1.000
262 1.000
263 1.000
264 1.000
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282 1.000
283 1.000
302 1.000
528 1.000
529 1.000
542 1.000
547 1.000
548 1.000
549 1.000
550 1.000
562 1.000
567 1.000
568 1.000
569 1.000

570 1.000
582 1.000
587 1.000
588 1.000
589 1.000
590 1.000
607 1.000
608 1.000
609 1.000

610 1.000
622 1.000
627 1.000
628 1.000
629 1.000
630 1.000
648 1.000
649 1.000
665 1.000
GAMS 2.20 VAX VMS 17-NOV-1992 20:41 PAGE 407
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

2063 VARIABLE X.L BINARY VARIABLE

1

686 1.000

706 1.000
710 1.000
879 1.000
935 1.000
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936 1.000
937 1.000
938 1.000
951 1.000
952 1.000
953 1.000
954 1.000
955 1.000
956 1.000
957 1.000
958 1.000
959 1.000
968 1.000
969 1.000
970 1.000
971 1.000
972 1.000
973 1.000
974 1.000
975 1.000
976 1.000
977 1.000
978 1.000
979 1.000

2063 VARIABLE Z.L = 11710.000 TOTAL COST OF

ACQUIRED PIXELS
GAMS 2.20 VAX VMS 17-NOV-1992 20:41 PAGE 413
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

**** FILE SUMMARY

INPUT GSO92D:[JAMRINE)R1003.GMS;6
OUTPUT GSO92D:[JAMRINE]R1003.LIS;4

EXECUTION TIME = 34.340 SECONDS
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1.2 Character Representation of Water Based on Three-Channel Filtering

uhlfXXXXXInxflxxIxx
x x
x x

I x
x x
I I
Iv I
IVY I
1MWv I
11ww I
IWli I

I I
I I
I I
I I
I I
I I
x I
I I
I x
I I

IV MMMV I

xv MMMV I

I vv I

I I
I I
I I
I I
I I
I I
I MI
I Ir
I x

I MMMvVIwv
I MMMvvMMMMIvv
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Appendix J. Channel 1 - Channel 2 Program

In this appendix is contained a partial listing of a weighted, two-channel,

multiobjective GAMS program. In this program, Channel 1 has weight of 0.1 and

Channel 2 has a weight of 0.9. This program was repeated nine times with different

lambda weights. The same program was also modified to run the other two-channel

combinations: Channel 1 - Channel 3 and Channel 2 - Channel 3. In the partial

listing, the adjacency and cost matices have been edited due to their length. Due to

the length of these input tables, they were generated with two separate FORTRAN

programs. These programs are also included in this appendix.

J.1 GAMS Program: Channel 1 - Channel 2

GAMS 2.20 VAX VMS 13-NOV-1992 10:38 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1

2
3 SETS
4 I PIXEL LOCATION / 1*1000 /
5 K NUMBER OF SUBREGIONS TO FIND / 1 /
6 G IMAGING CHANNEL / A, B I;
7
8 ALIAS (I,J)
9 SETS

10 ADJ (I,J) ADJACENCY MATRIX
11 /1. (2,21)

Remaining 999 entries for adjacency matrix were deleted.
1013
1014
1015 TABLE
1016
1017 C(I,G) COST OF EACH PIXEL
1018
1019 A B
1020
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1021 1 999 999

Remaining 999 entries for cost matrix were deleted.
2021
2022 PARAMETERS
2023 M(K) PIXEL SIZE OF KTH SUBREGION
2024 /1 24/
2025
2026 L(K) BORDER OF KTH SUBREGION
2027 /A 44/
2028
2029
2030 VARIABLES
2031 Z TOTAL COST OF ACQUIRED PIXELS
2032 X(I,K) BINARY VARIABLE
2033 P(I,J,K) BINARY VARIABLE
2034 N(I,JK) BINARY VARIABLE
2035
2036 BINARY VARIABLES X,PN;
2037
2038 EQUATIONS

2039 OBJ OBJECTIVE FUNCTION

2040 Ci(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
2041 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
2042 C3(K) CONSTRAINT FOR BORDER LENGTH
2043 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
2044 C5(I) CONSTRAINT FOR SUBREGIONS;
2045
2046 OBJ
2047 Z =E= SUM((I,K), 0.1*C(I,"A")*X(I,K)
2048 + 0.9*C(I,"B")*X(IK));
2049
2050 CI(K)..
2051 SUM(I,X(I,K)) =E= M(K);
2052

GAMS 2.20 VAX VMS 13-NOV-1992 10:38 PAGE 39

GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

2053 C2(IJ,K) $ADJ(IJ)

2054 X(I,K) - X(J,K) - P(IJ,K) + N(I,J,K) =E= 0;

2055
2056 C3(K)..
2057 SUM((I,J) $ADJ(IJ), P(IJ,K) + N(I,J,K)) =E= L(K);

2058
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2059 C4(I,J,K) $ADJ(I,J)

2060 P(I,J,K) + N(I,J,K) =L= 1;
2061
2062 C5(I)
2063 SUM(K, X(IK)) =L= 1;
2064
2065 X.FX(I,"1")$(C(I,"A") GT 22) = 0;
2066 X.FX(I,"1")$(C(I,"B") LT 5 OR C(I,"B") GT 149) = 0;
2067
2068
2069
2070 MODEL SUBREGION /ALL/;
2071
2072 OPTIONS ITERLIM = 5000, RESLIM = 5000, WORK = 25000;
2073
2074 SOLVE SUBREGION USING MIP MAXIMIZING Z;
2075
2076 DISPLAY X.L,P.L,N.L,Z.L;
2077
2078
2079

GAMS 2.20 VAX VMS 13-NOV-1992 10:38 PAGE 134
GENERAL ALGEBRAIC MODELING SYSTEM
MODEL STATISTICS SOLVE SUBREGION USING HIP FROM LINE 2074

MODEL STATISTICS

BLOCKS OF EQUATIONS 6 SINGLE EQUATIONS 8723
BLOCKS OF VARIABLES 4 SINGLE VARIABLES 8721
NON ZERO ELEMENTS 33881 DISCRETE VARIABLES 7799

GENERATION TIME = 117.100 SECONDS

EXECUTION TIME = 119.430 SECONDS
GAMS 2.20 VAX VMS 13-NOV-1992 11:05 PAGE 135
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE SUBREGION USING MIP FROM LINE 2074

SOLVE SUMMARY

MODEL SUBREGION OBJECTIVE Z
TYPE HIP DIRECTION MAXIMIZE
SOLVER ZOOM FROM LINE 2074
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**** SOLVER STATUS 1 NORMAL COMPLETION
****MODEL STATUS 1 OPTIMAL
****OBJECTIVE VALUE 1706.0000

RESOURCE USAGE, LIMIT 554.890 5000.000

ITERATION COUNT, LIMIT 1544 5000

Z 0 0 M / X M P --- Version 2.1 Oct 1988

Courtesy of Dr Roy E. Marsten,

Department of Management Information Systems,
University of Arizona,
Tucson Arizona 85721, U.S.A.

PROBLEM SPECIFICATIONS

BEGIN
HEURISTIC NO
DIVE NO

END

Work space needed (estimate) -- 1041383 words.

Work space available -- 1041383 words.

Iterations: Initial LP 1544, Time: 516.930
Heuristic 0, O.OOOOOOE+00
Branch and bound 0, O.OOOOOOE+00
Final LP 0, O.OOOOOE+O0

GAMS 2.20 VAX VMS 13-NOV-1992 11:05 PAGE 486
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

2076 VARIABLE X.L BINARY VARIABLE

1

528 1.000
529 1.000
547 1.000

548 1.000
549 1.000
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550 1.000
567 1.000
568 1.000
569 1.000
570 1.000
587 1.000
588 1.000
589 1.000
590 1.000
607 1.000
608 1.000
609 1.000

610 1.000
627 1.000
628 1.000
629 1.000
630 1.000
648 1.000
649 1.000

GAMS 2.20 VAX VMS 13-NOV-1992 11:05 PAGE 487
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

2076 VARIABLE Z.L 1706.000 TOTAL COST OF
ACQUIRED PIXELS

**** FILE SUMMARY

INPUT GS092D:[JAMRINE]RIK19ASB.GMS;I
OUTPUT GS092D:[JAMRINE]R1K19ASB.LIS;1

EXECUTION TIME = 37.810 SECONDS

J.2 FORTRAN ProgramL: GAMS Adjacency Matrix Generation

* 1ST ORDER NEIGHBOR MATRIX (ADJACENCY MATRIX) GENERATION PROGRAM *

* AUTHOR: John M. Amrine *

* CREATED: Nov 1992 *
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* THIS PROGRAM CREATES A GAMS INPUT FILE. THE PROGRAM LISTS THE FIRST *
* ORDER NEIGHBORS FOR A 50 X 20 (ROWS X COLUMNS) MATRIX. THIS PROGRAM *

* CAN BE EASILY MODIFIED TO ACCOMODATE ANY SIZE MATRIX. *

* Variables: *
* I :Counter for pixel location *

* MAX :Total number of pixels in matrix *

INTEGER I, MAX

MAX = 1000
I=1
PRINT *, ' ALIAS (I,J)'

PRINT *, ' SETS'
PRINT *, ' ADJ (I,J) ADJACENCY MATRIX'
PRINT *

DO 10 I = 1, MAX
IF (I .EQ. 1) THEN

PRINT 1100, I, 1+1, 1+20
ELSE IF (I .EQ. 20) THEN

PRINT 1200, I, I-1, 1+20
ELSE IF (I .EQ. 981) THEN

PRINT 1200, I, 1-20, 1+1
ELSE IF (I .EQ. 1000) THEN

PRINT 1250, I, 1-20, I-i
ELSE IF (I .GT. 1 .AND. I .LT. 20) THEN

PRINT 1300, I, I-1, 1+1, 1+20

ELSE IF (I .GT. 981 .AND. I .LT. 1000) THEN
PRINT 1300, I, 1-20, 1-1, 1+1

ELSE IF (I .GT. 20 .AND. I .LT. 981 .AND.
+ MOD(I,20) .EQ. 1) THEN

PRINT 1300, I, 1-20, 1+1, 1+20
ELSE IF (I .GT. 20 .AND. I .LT. 981 .AND.

+ MOD(I,20) .EQ. 0) THEN
PRINT 1300, I, 1-20, 1-1, 1+20

ELSE
PRINT 1400, I, 1-20, 1-1, 1+1, 1+20

END IF
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10 CONTINUE

1100 FORMAT (13X, '/', I1, '', 2X, '(', I1, ',', 12, ')' )

1200 FORMAT (fOX, 15, '' 2X '', 14, ',', 14, ')' )

1250 FORMAT (lOX, 15, '., 2X, ' 1', 14, ),', 14, P) /' )

1300 FORMAT (lOX, 15, '2, 2X, '(', 2(14, ','), 14, ')' )

1400 FORMAT (lOX, I5, '.', 2X, 'C', 3(14, ','), 14, ')' )

END

J.3 FORTRAN Program: GAMS Cost Matrix Generation

* GAMS COST MATRIX GENERATION PROGRAM *
"* AUTHOR: John M. Amrine *
"* CREATED: Nov 1992 *

"* THIS PROGRAM CREATES A GAMS INPUT FILE. THE PROGRAM READS THE GRAY *
"* VALUES FOR ONE LOCATION AND LISTS THE GRAY VALUES FOR EACH CHANNEL. *
"* CURRENTLY THE PROGRAM ONLY READS THREE CHANNELS SINCE SPOT IMAGERY *
"* IS USED. THE THREE CHANNELS ARE DESIGNATED BY A, B, AND C. THE PROGRAM*
"* CAN BE EASILY MODIFIED TO ACCOMODATE MORE OR LESS CHANNELS. THE INPUT *
"* MATRIX IS 150 (ROWS) X 20 (COLUMNS). THIS MATRIX ACTUALLY CONTAINS *
"* THREE IMAGES OF THE SAME AREA, CORRESPONDING TO THE THREE CHANNELS. THE*
"* FIRST FIFTY ROWS CORRESPONDS TO THE FIRST CHANNEL, THE SECOND FIFTY *
"* ROWS (51-100) TO THE SECOND CHANNEL, AND THE LAST FIFTY ROWS TO THE *
" THIRD CHANNEL. THE INPUT FILE FOR THIS FORTRAN PROGRAM IS READ IN *
"* USING THE a.out < filename.ext UNIX COMMAND. *

* Variables: *

* I :Counter for rows *

* J :Counter for columns *

* A :Gray value of pixel in Channel 1 at location COUNT *
* B :Gray value of pixel in Channel 2 at location COUNT *
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* C :Gray value of pixel in Channel 3 at location COUNT *
* COLS :Max number of columns *

* ROWS :Max number of rows *
* COUNT:Counter for pixel location *

* ARRAY: Input matrix (150 X 20) *

INTEGER COLS, ROWS, I, J, COUNT, A, B
INTEGER ARRAY (150,20)

"* Data will be read from external data file

READ *, ROWS, COLS

"* Fill the integer array

DO 10 I = 1, ROWS
READ *, (ARRAY (I, J), J = 1, COLS)

10 CONTINUE

PRINT *, ' TABLE'

PRINT *

PRINT *, C(I,G) COST OF EACH PIXEL'
PRINT *

PRINT *, A B'

PRINT *

* Read gray values of each channel by position

COUNT = 1
DO 20 I = 1, 50

DO 30 J = 1, COLS
A = ARRAY (I, J)
B = ARRAY (I + 50, J)

* C = ARRAY (I + 100, J)
IF (COUNT .EQ. 1000) THEN

GO TO 40
ELSE
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PRINT 1000, COUNT, A, B
END IF
GO TO 50

40 PRINT 1100, COUNT, A, B
50 COUNT = COUNT + 1
30 CONTINUE
20 CONTINUE

1000 FORMAT (lOX, 14, 215)
1100 FORMAT (lOX, 14, 215, ' ;' )

END
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Appendix K. Channel 1 - Channel 3 Program

In this appendix is contained the partial listing of Channel 1 - Channel 3,

weighted, multiobjective GAMS program. In this program, Channel 1 has weight of

0.1 and Channel 3 has a weight of 0.9. This program was repeated nine times with

different lambda weights. In the partial listing, the adjacency and cost matices have

been edited due to their length. Due to the length of these input tables, they were

generated with two separate FORTRAN programs. These programs are included in

Appendix J.

K. I GAMS Program: Channel 1 - Channel 3

GAMS 2.20 VAX VMS 18-NOV-1992 03:23 PAGE
GENERAL ALGEBRAIC MODELING SYSTEM
COMPILATION

1
2
3 SETS
4 I PIXEL LOCATION / 1*1000 /
5 K NUMBER OF SUBREGIONS TO FIND / 1 I
6 G IMAGING CHANNEL / A, C I;
7
8 ALIAS (I,J)
9 SETS

10 ADJ (I,J) ADJACENCY MATRIX
11 /1. (2,21)

Remaining 999 entries deleted.
1013
1014
1015 TABLE
1016
1017 C(I,G) COST OF EACH PIXEL
1018
1019 A C
1020
1021 1 999 999
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Remaining 999 entries deleted.
2022
2023 PARAMETERS
2024 M(K) PIXEL SIZE OF KTH SUBREGION
2025 /1 24/
2026
2027 L(K) BORDER OF KTH SUBREGION
2028 /1 44/

2029
2030

2031
2032 VARIABLES

2033 Z TOTAL COST OF ACQUIRED PIXELS
2034 X(I,K) BINARY VARIABLE

2035 P(I,J,K) BINARY VARIABLE
2036 N(I,JK) BINARY VARIABLE
2037
2038 BINARY VARIABLES X,P,N;
2039
2040 EQUATIONS
2041 OBJ OBJECTIVE FUNCTION
2042 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
2043 C2(I,J,K) CONSTRAINT FOR CONTIGUITY
2044 C3(K) CONSTRAINT FOR BORDER LENCTH
2045 C4(I,J,K) CONSTRAINT FOR P&N MUTUAL EXCLUSION
2046 C5(I) CONSTRAINT FOR SUBREGIONS;
2047
2048 OBJ
2049 Z =E= SUM((I,K), 0.1*C(I,"A")*X(I,K)
2050 + 0.9*C(I,"C")*X(I,K));
2051
2052 CI(K)..

GAMS 2.20 VAX VMS 18-NOV-1992 03:23 PAGE 39
GENERAL ALGEBRAIC MODEL IhG SYSTEM
C 0 M P I L A T I 0 N

2053 SUM(I,X(I,K)) =E= M(K);
2054
2055 C2(I,J,K) $ADJ(I,J)
2056 X(I,K) - X(J,K) - P(I,JK) + N(I,JK) =E= 0;
2057
2058 C3(K)..
2059 SUM((IJ) $ADJ(I,J), P(I,J,K) + N(I,J,K)) =E= L(K);
2060
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2061 C4(IJ,K) $ADJ(I,J) ..
2062 P(I,J,K) + N(I,J,K) =L= 1;
2063
2064 C5(I)
2065 SUM(K, X(I,K)) =L= 1;
2066
2067 X.FX(I,"I")$(C(I,"A") GT 22) = 0;
2068 X.FX(I,"I")$(C(I,"C") LT 5 OR C(I,"C") GT 200) = 0;
2069
2070
2071 MODEL SUBREGION /ALL/;
2072
2073 OPTIONS ITERLIM = 5000, RESLIM = 5000, WORK = 25000;
2074
2075 SOLVE SUBREGION USING NIP MAXIMIZING Z;
2076
2077 DISPLAY X.L,P.L,N.LZ.L;
2078
2079
2080

GAMS 2.20 VAX VMS 18-NOV-1992 03:23 PAGE 134
GENERAL ALGEBRAIC MODELING SYSTEM
MODEL STATISTICS SOLVE SUBREGION USING NIP FROM LINE 2075

MODEL STATISTICS

BLOCKS OF EQUATIONS 6 SINGLE EQUATIONS 8723
BLOCKS OF VARIABLES 4 SINGLE VARIABLES 8721
NON ZERO ELEMENTS 33881 DISCRETE VARIABLES 7801

GENERATION TIME 118.890 SECONDS

EXECUTION TIME = 121.320 SECONDS
GAMS 2.20 VAX VMS 18-NOV-1992 04:13 PAGE 135
GENERAL ALGEBRAIC MODELING SYSTEM
SOLUTION REPORT SOLVE SUBREGION USING MIP FROM LINE 2075

SOLVE SUMMARY

MODEL SUBREGION OBJECTIVE Z
TYPE MIP DIRECTION MAXIMIZE
SOLVER ZOOM FROM LINE 2075
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**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 2253.2000

RESOURCE USAGE, LIMIT 511.530 5000.000
ITERATION COUNT, LIMIT 1380 5000

Z 0 a M / X M P --- Version 2.1 Oct 1988

Courtesy of Dr Roy E. Marsten,
Department of Management Information Systems,
University of Arizona,
Tucson Arizona 85721, U.S.A.

PROBLEM SPECIFICATIONS

BEGIN
HEURISTIC NO
DIVE NO

END

Work space needed (estimate) -- 1041389 words.
Work space available -- 1041389 words.

Iterations: Initial LP 1380, Time: 471.460
Heuristic 0, O.O00000E+00
Branch and bound 0, O.OOOOOOE+00
Final LP 0, O.OOOOOOE+00

GAMS 2.20 VAX VMS 18-NOV-1992 04:13 PAGE 486
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

2077 VARIABLE X.L BINARY VARIABLE

1

528 1.000
529 1.000
547 1.000
548 1.000
549 1.000
550 1.000

567 1.000
568 1.000
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569 1.000
570 1.000
587 1.000

588 1.000
589 1.000
590 1.000
607 1.000
608 1.000
609 1.000
610 1.000
627 1.000
628 1.000

629 1.000
630 1.000

648 1.000
649 1.000

GAMS 2.20 VAX VMS 18-NOV-1992 04:13 PAGE 487
GENERAL ALGEBRAIC MODELING SYSTEM
EXECUTING

2077 VARIABLE Z.L 2253.200 TOTAL COST OF
ACQUIRED PIXELS

**** FILE SUMMARY

INPUT GS092D:[JAMRINE]R19BSB.GMS;1
OUTPUT GS092D:EJAMRINE]R19BSB.LIS;1

EXECUTION TIME 41.100 SECONDS
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Appendix L. Vegetation Indicies Results 6 Programs

In this appendix are contained the following matrices: vegetation index, nor-

malized vegetation index, and near-IR/red. These matrices were calculated using

the FORTRAN programs included in this appendix. When using the SPOT mul-

tispectral imagery for these matrices, only Channels 2 (red) and 3 (near-IR) were

used.
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.1 VI Matrix

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. -1. -2. 18. 17. 26. 8. -1. -2. 6. 9. 28. 11. 6. 12. 17. 23. 17. I1. 0.
0. 1 . I1. 12. 12. 23. 1 . -10. 0. 18. 12. 17. 16, 15. 4. 1 . 17. 11. 1 . 0.
0. -10. -10. -20. -12. -12. -1. 9. 4. -6. -10. -11. 8. 0. -10. 15. 15. 14. 18. 0.
0. -11. S. S. -22. 35. 7. 6. 12. -3. 0. 17. 0. -1. 25. 2S. 24. S. 17. 0.
0. 12. 6. -4. -1. 9. 19. 6. 20. 6. -1. -1. 10. 6. 16. S. 33. 20. 17. 0.
0. 12. 28. -6. -11. 1 . 7. 4. S. 7. 16. -3. 6. 12. S. -3. 33. 14. 6. 0.
0. 21. 40. 24. 12. -3. S. 17. -5. 7. 16. 17. 6. 1 . -1. S. 6. 24. -11. 0.
0. 52. 46. 6. 18. -14. -14. 11. 6. 6. 6. 12. 2S. 7. -1. 14. -10. 6. 12. 0.
0. 2S. I1. 23. 0. 12. 17. 7. -2. 6. 12. 29. -3. 16. 7. S. 15. 20. -S. 0.
0. S3. 1. 14. 0. -3. -2. -2. -2. -5. -11. 8. -3. 6. 7. 25. 6. 1. 6. 0.
0. 30. 43. 43. 1. -2. -2. -3. -6. -S. -4. 24. 33. 16. 7. -3. 7. 10. -14. 0.
0. 43. 26. 11. -1. -S. -4. -5. -5. -5. 0. 24. IS. 8. 18. 15. 6. 0. 4. 0.
0. 74. 36. 17. -5. -22. -10. -6. -6. 6. 11. 10. 7. 0. -1. 23. 10. 17. 11. 0.
0. 4. 40. -4. -11. -4. -31. -11. -6. -3. 12. 6. 16. 2. 1. 24. 14. 23. 11. 0.
0. 2S. 29. -2. -11. -21. -30. -16. 0. -10. -2. -S. 33. 7. 17. IS. -4. 0. 12. 0.
0. 29. 18. -4. -2. -12. -12. 6. 21. -3. -1. 16. 26. 33. 14. IS. 29. 6. 14. 0.
0. 28. S. -12. -2. -2. -1. -3. 16. -12. 8. 1. -1. 21. 6. 4. 10. -6. 14. 0.
0. -12. -10. -30. -20. -1. -1. -2. S. 6. -12. -10. 1. -12. 20. -11. 1I. 12. Is. 0.
0. -2. -11. 0. -1. -1. 16. 6. S. 10. 24. 44. 3S. 7. -12. 6. 6. 23. IS. 0.
0. -S. 7. 17. 35. 27. 9. 8. -13. S. S. -3. 20. IS. 9. IS. 6. 6. 22. 0.
0. 6. 6. 1. 7. -1. 9. 15. -2. 16. 26. 16. 15. 15. 2. 14. -S. 17. 23. 0.
0. -23. -S. 1. 24. 4. 6. 16. -20. 8. -2. 25. 6. 15. 16. 11. 0. 6. 28. 0.
0. 14. -3. 16. 15. -S. -3. 7. 7. -1. -2. -2. 6. 33. 12. 11. 6. 18. 19. 0.
0. 20. 1. 16. 9. -12. 6. 28. 22. 6. -12. 18. 8. 3S. 6. 6. -4. 4. -3. 0.
0. 1. 6. S. -1. 16. 19. 35. 14. 7. 0. 0. 1. 0. 8. 11. 0. -6. 6. 0.
0. 17. -1. 1. 18. 24. It. 1. 17. 10. 4. 10. 17. 2. 16. 1. -S. -5. 15. 0.
0. 6. 4. -2. 0. 24. 6. 39. 25. 4S. 3. 23. 23. 17. 17. -1. 1. 1. 1. 0.
0. 1. 28. 18. -1. 17. 24. 40. 44. 34. 2. 23. 24. 1. 6. 6. 0. 0. 23. 0.
0. 1. 13. 1. -11. 6. IS. 23. 28. 17. 7. S. 0. 0. 1. -S. 14. 17. 12. 0.
0. 0. -11. -16. 0. 28. 12. 37. 34. 6. 9. 15. 18. 0. -2. 18. 6. 17. 23. 0.
0. 7. 0. -5. -4. 13. 14. 39. 52. 6. -1. 18. 22. 23. 0. -1. 17. 11. 31. 0.
0. 17. 11. -5. 12. 6. 46. 24. 26. 28. 0. 23. 17. 23. 12. 2. 6. 15. 44. 0.
0. 18. -14. -1. -1. 1. 33. 42. 34. 39. 17. -1. 0. 1. IS. 18. -S. 24. 10. 0.
0. 17. -4. -12. -12. 0. 23. 21. 14. 7. 17. -1. -2. 16. -S. 6. 1. 17. 17. 0.
0. 1S. -3. -5. 1. -2. -2. 7. -1. 0. 25. 31. 0. 6. 6. 18. 12. 17. -1. 0.
0. -1. 0. 17. -4. T. -2. -3. -3. 14. 10. 23. 8. 9. -14. 6. 6. 11. 17. 0.
0. 1. 2. 1. -1. 27. 23. 25. 10. S. -3. 19. 19. 1. -12. 11. -5. 17. 17. 0.
0. 19. 2. 1. 10. 19. 26. -12. -3. -2. 1. 2. -2. 20. 14. 20. 4. 6. 14. 0.
0. 4. 1. 1. 0. -1. 18. -3. 25. 2S. 9. -1. 24. 6. 10. -5. 16. 12. 15. 0.
0. 1. 1. 1. 0. 2. 27. 16. 26. 17. 0. 0. S. 17. 15. IS. 17. 17. 11. 0.
0. 18. 2. 2. 27. 7. 8. 18. 17. 26. 24. 9. S. 7. 15. 17. 23. 17. 6. 0.
0. IS. 26. 27. 26. -10. 1. 1. 24. 28. 28. 25. 18. 7. 7. 11. 11. IS. 23. 0.
0. 34. 17. 16. 0. 9. 26. 23. 24. 15. 24. 20. 16. 23. -2. 14. -5. -1. -19. 0.
0. 11. S. 0. 20. 33. 14. 6. 34. 15. 6. 6. 12. 12. 6. 15. -23. 1. 6. 0.
0. 4. 24. 24. 14. 15. 15. 6. S. 0. 6. 23. 17. 22. 11. 29. 11. 6. 17. 0.
0. 33. 50. 33. -12. 14. 0. 17. 18. 23. 34. 29. 40. 23. 45. 29. 17. S1. 34. 0.
0. 17. 31. 42. 17. 18. 12. 6. 17. 12. 17. 35. 44. 25. 1. 18. 15. 16. 25. 0.
0. 6. 17. 12. 11. 12. 18. 14. 26. 6. 10. 17. 24. 16. 18. 52. 33. 34. 35. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
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L.2 NVI Matrix

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.05 0.04 0.07 0.02 0.00 0.00 0.02 0.02 0.08 0.05 0.02 0.05 0.07 0.07 0.07 0.05 0.00
0.00 0.00 0.00 0.05 0.05 0.09 0.00 -0.04 0.00 0.06 0.04 0.07 0.17 0.10 0.02 0.00 0.06 0.05 0.00 0.00
0.00 -0.33 -0.33 -0.34 -0.10 -0.12 -0.02 0.31 0.02 -0.03 -0.21 -0.16 0.17 0.00 -0.21 0.10 0.07 0.08 0.06 0.00
0.00 -0.05 0.03 0.03 -0.15 0.38 0.08 0.04 0.05 -0.03 0.00 0.30 0.00 -0.06 0.24 0.13 0.15 0.03 0.05 0.00
0.00 0.04 0.02 -0.02 -0.02 0.31 0.51 0.04 0.10 0.05 -0.03 -0.02 0.36 0.05 0.07 0.03 0.20 0.10 0.05 0.00
0.00 0.04 0.08 -0.02 -0.38 0.05 0.07 0.02 0.03 0.08 0.17 -0.02 0.03 0.05 0.03 -0.03 0.20 0.08 0.02 0.00
0.00 0.10 0.11 0.06 0.05 -0.02 0.03 0.07 -0.02 0.08 0.10 0.07 0.02 0.00 -0.06 0.03 0.03 0.17 -0.04 0.00
0.00 0.35 0.16 0.01 0.05 -0.07 -0.07 0.04 0.02 0.04 0.03 0.04 0.13 0.08 -0.05 0.08 -0.04 0.03 0.04 0.00
0.00 0.24 0.07 0.08 0.00 0.04 0.05 0.02 0.00 0.02 0.04 0.16 -0.03 0.17 0.07 0.03 0.07 0.10 -0.02 0.00
0.00 0.57 0.07 0.08 0.00 -0.01 0.00 0.00 0.00 -0.01 -0.04 0.17 -0.02 0.04 0.07 0.21 0.04 0.00 0.02 0.00
0.00 0.68 0.31 0.31 0.00 0.00 0.00 -0.01 -0.01 -0.01 -0.02 0.15 0.22 0.17 0.08 -0.03 0.07 0.05 -0.07 0.00
0.00 0.36 0.31 0.05 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 0.15 0.11 0.12 0.47 0.11 0.04 0.00 0.02 0.00
0.00 0.44 0.64 0.05 -0.01 -0.06 -0.03 -0.01 -0.01 0.02 0.04 0.05 0.07 0.00 -0.03 0.13 0.05 0.07 0.05 0.00
0.00 0.25 0.21 -0.01 -0.03 -0.02 -0.22 -0.04 -0.02 -0.02 0.05 0.03 0.14 0.14 0.05 0.17 0.08 0.09 0.05 0.00
0.00 0.21 0.08 0.00 -0.05 -0.22 -0.29 -0.07 0.00 -0.21 -0.02 -0.03 0.20 0.08 0.30 0.11 -0.03 0.00 0.05 0.00
0.00 0.08 0.05 -0.03 -0.02 -0.12 -0.12 0.04 0.10 -0.02 -0.02 0.17 0.12 0.13 0.08 0.11 0.16 0.03 0.08 0.00
0.00 0.08 0.03 -0.43 -0.02 -0.03 -0.03 -0.03 0.07 -0.12 0.12 0.05 -0.03 0.10 0.03 0.02 0.05 -0.02 0.08 0.00
0.00 -0.10 -0.21 -0.62 -0.34 -0.05 -0.03 -0.02 0.03 0.04 -0.12 -0.33 0.05 -0.12 0.10 -0.05 0.00 0.05 0.07 0.00
0.00 -0.02 -0.13 0.00 -0.02 -0.02 0.17 0.05 0.03 0.05 0.17 0.52 0.38 0.07 -0.10 0.03 0.02 0.09 0.07 0.00
0.00 -0.02 0.07 0.23 0.38 0.57 0.31 0.12 -0.09 0.03 0.03 -0.02 0.10 0.10 0.31 0.07 0.02 0.02 0.08 0.00
0.00 0.03 0.02 0.00 0.08 -0.02 0.31 0.11 -0.02 0.14 0.31 0.14 0.11 0.11 0.11 0.08 -0.02 0.07 0.08 0.00
0.00 -0.14 -0.02 0.00 0.15 0.02 0.04 0.11 -0.26 0.12 -0.02 0.21 0.05 0.10 0.14 0.05 0.00 0.03 0.10 0.00
0.00 0.08 -0.02 0.17 0.07 -0.02 -0.03 0.07 0.07 -0.02 -0.03 -0.02 0.04 0.22 0.05 0.03 0.02 0.05 0.05 0.00
0.00 0.10 0.00 0.14 0.31 -0.12 0.03 0.10 0.06 0.02 -0.12 0.47 0.12 0.38 0.03 0.02 -0.01 0.01 -0.01 0.00
0.00 0.00 0.02 0.03 -0.08 0.07 0.05 0.10 0.04 0.02 0.00 0.00 0.07 0.00 G.17 0.04 0.00 -0.02 0.02 0.00
0.00 0.05 0.00 0.00 0.06 0.06 0.03 0.00 0.07 0.03 0.01 0.05 0.30 0.14 0.10 0.00 -0.02 -0.02 0.11 0.00
0.00 0.03 0.01 0.00 0.00 0.06 0.04 0.23 0.21 0.14 0.01 0.07 0.08 0.07 0.05 0.00 0.00 0.00 0.00 0.00
0.00 0.09 0.08 0.05 0.00 0.06 0.17 0.15 0.43 0.12 0.00 0.08 0.15 0.07 0.04 0.02 0.00 0.00 0.10 0.00
0.00 0.05 0.03 0.00 -0.03 0.02 0.11 0.10 0.12 0.06 0.02 0.03 0.00 Ras 0.07 -0.02 0.08 0.07 0.05 0.00
0.00 0.00 -0.04 -0.04 0.00 0.08 0.46 0.16 0.18 0.03 0.02 0.10 0.47 0.00 -0.03 0.06 0.03 0.06 0.10 0.00
0.00 0.08 0.00 -0.01 -0.01 0.03 0.58 0.23 0.40 0.03 0.00 0.05 0.06 0.07 0.00 0.00 0.07 0.04 0.15 0.00
0.00 0.07 0.03 -0.02 0.03 0.01 0.16 0.17 0.31 0.10 0.00 0.06 0.07 0.13 0.04 0.00 0.03 0.10 0.25 0.00
0.00 0.06 -0.07 -0.20 -0.07 0.00 0.09 0.27 0.18 0.11 0.06 -0.03 0.00 0.08 0.11 0.06 -0.03 0.17 0.05 0.00
0.00 0.06 -0.02 -0.12 -0.12 0.00 0.10 0.10 0.08 0.07 0.30 -0.06 -0.02 0.07 -0.02 0.02 0.00 0.05 0.05 0.00
0.00 0.07 -0.03 -0.02 0.00 -0.11 -0.03 0.07 -0.02 0.00 0.24 0.15 0.00 0.03 0.02 0.06 0.05 0.05 0.00 0.00
0.00 -0.06 0.00 0.30 -0.02 0.08 -0.02 -0.02 -0.02 0.08 0.05 0.13 0.12 0.31 -0.08 0.03 0.03 0.04 0.05 0.00
0.00 0.07 0.12 0.09 -0.06 0.57 0.13 0.13 0.05 0.03 -0.03 0.51 0.51 0.05 -0.10 0.05 -0.02 0.07 0.07 0.00
n.00 0.51 0.12 0.06 0.36 0.51 0.24 -0.10 -0.03 -0.03 0.05 0.14 -0.03 0.10 0.08 0.10 0.02 0.03 0.08 0.00
0.00 0.25 0.06 0.07 0.00 -0.07 0.47 -0.03 0.21 0.24 0.31 -0.06 0.15 0.03 0.05 -0.02 0.07 0.05 0.07 0.00
0.00 0.07 0.07 0.07 0.00 0.11 0.57 0.17 0.31 0.23 0.00 0.00 0.03 0.07 0.07 0.07 0.07 0.07 0.04 0.00
0.00 0.47 0.12 0.14 0.57 0.08 0.17 0.47 0.30 0.24 0.17 0.31 0.17 0.07 0.10 0.06 0.08 0.07 0.02 0.00
0.00 0.11 0.39 0.57 0.31 -0.21 0.06 0.06 0.17 0.11 0.11 0.24 0.47 0.07 0.08 0.04 0.03 0.07 0.13 0.00
0.00 0.18 0.07 0.17 0.00 0.31 0.31 0.13 0.17 0.11 0.17 0.10 0.07 0.13 -0.03 0.08 -0.02 -0.02 -0.49 0.00
0.00 0.04 0.03 0.00 0.56 0.20 0.08 0.04 0.26 0.10 0.04 0.03 0.04 0.04 0.03 0.07 -0.12 0.00 0.02 0.00
0.00 0.02 0.17 0.15 0.08 0.10 0.10 0.05 0.03 0.00 0.02 0.07 0.05 0.06 0.03 0.08 0.03 0.02 0.05 0.00
0.00 0.22 0.27 0.22 -0.10 0.08 0.00 0.05 0.06 0.07 0.10 0.10 0.12 0.07 0.14 0.10 0.06 0.17 0.09 0.00
0.00 0.07 0.15 0.27 0.07 0.06 0.04 0.02 0.06 0.04 0.07 0.38 0.52 0.24 0.05 0.47 0.11 0.14 0.21 0.00
0.00 0.02 0.07 0.04 0.03 0.04 0.06 0.08 0.21 0.04 0.36 0.23 0.17 0.07 0.47 0.35 0.22 0.26 0.38 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

291



L.3 Near-IR/Red Matrix

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 0.99 1.10 1.09 1.15 1.04 1.00 0.99 1.03 1.05 1.18 1.10 1.05 1.10 1.14 1.15 1.15 1.10 1.00
1.00 1.01 1.01 1.09 1.09 1.20 1.01 0.93 1.00 1.12 1.09 1.15 1.41 1.22 1.04 1.01 1.12 1.10 1.01 1.00
1.00 0.50 0.50 0.49 0.82 0.79 0.97 1.90 1.04 0.95 0.66 0.72 1.40 1.00 0.66 1.22 1.16 1.18 1.12 1.00
1.00 0.90 1.06 1.06 0.74 2.21 1.18 1.09 1.11 0.95 1.00 1.85 1.00 0.89 1.64 1.29 1.36 1.06 1.10 1.00
1.00 1.08 1.05 0.95 0.97 1.90 3.11 1.09 1.23 1.10 0.95 0.97 2.11 1.10 1.16 1.06 1.49 1.23 1.11 1.00
1.00 1.08 1.17 0.97 0.45 1.11 1.15 1.04 1.06 1.18 1.41 0.96 1.06 1.10 1.06 0.95 1.49 1.18 1.05 1.00
1.00 1.22 1.25 1.14 1.10 0.96 1.06 1.16 0.96 1.18 1.22 1.15 1.05 1.01 0.89 1.06 1.05 1.41 0.92 1.00
1.00 2.08 1.37 1.03 1.10 0.87 0.87 1.09 1.04 1.09 1.05 1.09 1.29 1.18 0.90 1.16 0.92 1.05 1.08 1.00
1.00 1.64 1.14 1.17 1.00 1.08 1.11 1.04 0.99 1.03 1.09 1.38 0.95 1.41 1.15 1.06 1.16 1.23 0.96 1.00
1.00 3.65 1.14 1.18 1.00 0.99 0.99 0.99 0.99 0.98 0.92 1.40 0.96 1.09 1.16 1.52 1.09 1.01 1.05 1.00
1.00 5.29 1.90 1.90 1.00 0.99 0.99 0.99 0.98 0.98 0.95 1.36 1.57 1.41 1.18 0.95 1.15 1.10 0.87 1.00
1.00 2.10 1.90 1.10 1.00 0.98 0.98 0.98 0.98 0.98 1.00 1.36 1.26 1.28 2.80 1.26 1.09 1.00 1.04 1.00
1.00 2.54 4.60 1.11 0.98 0.89 0.94 0.97 0.98 1.03 1.08 1.10 1.15 1.00 0.95 1.30 1.10 1.15 1.10 1.00
1.00 1.67 1.52 0.98 0.94 0.95 0.64 0.92 0.96 0.96 1.11 1.05 1.33 1.33 1.11 1.41 1.16 1.20 1.10 1.00
1.00 1.52 1.17 0.99 0.91 0.64 0.55 0.86 1.00 0.66 0.96 0.95 1.49 1.18 1.85 1.26 0.95 1.00 1.11 1.00
1.00 1.17 1.10 0.95 0.96 0.79 0.79 1.09 1.22 0.96 0.97 1.41 1.27 1.30 1.18 1.26 1.38 1.06 1.18 1.00
1.00 1.18 1.06 0.40 0.96 0.95 0.95 0.95 1.16 0.79 1.28 1.11 0.95 1.22 1.06 1.04 1.10 0.95 1.16 1.00
1.00 0.82 0.66 0.23 0.49 0.90 0.95 0.96 1.06 1.09 0.79 0.60 1.11 0.79 1.23 0.91 1.01 1.11 1.16 1.00
1.00 0.96 0.77 1.00 0.97 0.97 1.41 1.10 1.06 1.10 1.41 3.20 2.21 1.16 0.82 1.05 1.05 1.20 1.16 1.00
1.00 0.95 1.15 1.59 2.21 3.70 1.90 1.28 0.83 1.06 1.06 0.96 1.23 1.22 1.90 1.16 1.05 1.05 1.18 1.00
1.00 1.06 1.05 1.01 1.18 0.97 1.90 1.26 0.96 1.33 1.90 1.33 1.26 1.26 1.26 1.16 0.95 1.16 1.18 1.00
1.00 0.76 0.96 1.01 1.36 1.04 1.09 1.26 0.58 1.28 0.96 1.52 1.10 1.22 1.33 1.10 1.00 1.06 1.23 1.00
1.00 1.18 0.96 1.41 1.16 0.96 0.95 1.16 1.15 0.97 0.95 0.96 1.09 1.57 1.10 1.06 1.03 1.10 1.10 1.00
1.00 1.23 1.01 1.33 1.90 0.79 1.05 1.21 1.14 1.05 0.79 2.80 1.28 2.21 1.05 1.03 0.98 1.02 0.99 1.00
1.00 1.01 1.04 1.06 0.86 1.16 1.10 1.21 1.07 1.04 1.00 1.00 1.14 1.00 1.40 1.08 1.00 0.96 1.04 1.00
1.00 1.11 1.00 1.01 1.13 1.14 1.07 1.01 1.15 1.05 1.02 1.10 1.85 1.33 1.22 1.01 0.96 0.95 1.26 1.00
1.00 1.06 1.02 0.99 1.00 1.14 1.09 1.58 1.52 1.33 1.01 1.15 1.17 1.15 1.11 1.00 1.01 1.01 1.01 1.00
1.00 1.20 1.18 1.10 1.00 1.13 1.41 1.34 2.52 1.27 1.01 1.17 1.36 1.14 1.09 1.03 1.00 1.00 1.22 1.00
1.00 1.11 1.07 1.01 0.94 1.05 1.26 1.22 1.27 1.12 1.04 1.06 1.00 Nal 1.14 0.96 1.16 1.14 1.11 1.00
1.00 1.00 0.92 0.92 1.00 1.18 2.71 1.39 1.44 1.05 1.05 1.22 2.80 1.00 0.95 1.12 1.05 1.13 1.22 1.00
1.00 1.18 1.00 0.98 0.98 1.07 3.80 1.58 2.33 1.05 1.00 1.10 1.14 1.16 1.00 1.00 1.14 1.09 1.36 1.00
1.00 1.15 1.06 0.97 1.07 1.03 1.39 1.41 1.90 1.21 1.00 1.14 1.15 1.30 1.09 1.01 1.06 1.22 1.66 1.00
1.00 1.13 0.87 0.67 0.88 1.01 1.20 1.72 1.44 1.25 1.13 0.95 1.00 1.17 1.26 1.12 0.95 1.41 1.10 1.00
1.00 1.13 0.95 0.79 0.79 1.00 1.22 1.22 1.16 1.16 1.85 0.89 0.96 1.16 0.96 1.04 1.01 1.11 1.11 1.00
1.00 1.16 0.95 0.96 1.01 0.80 0.95 1.15 0.97 1.00 1.64 1.36 1.00 1.06 1.04 1.13 1.11 1.10 1.00 1.00
1.00 0.89 1.00 1.85 0.95 1.18 0.96 0.96 0.96 1.16 1.10 1.30 1.28 1.90 0.85 1.06 1.06 1.09 1.10 1.00
1.00 1.14 1.29 1.20 0.89 3.70 1.30 1.29 1.10 1.06 0.95 3.11 3.11 1.11 0.82 1.10 0.96 1.14 1.14 1.00
1.00 3.11 1.29 1.12 2.11 3.11 1.64 0.82 0.96 0.95 1.11 1.33 0.95 1.23 1.18 1.23 1.04 1.06 1.16 1.00
1.00 1.67 1.12 1.14 1.00 0.88 2.80 0.95 1.52 1.64 1.90 0.89 1.36 1.05 1.10 0.95 1.16 1.10 1.16 1.00
1.00 1.14 1.14 1.14 1.00 1.25 3.70 1.41 1.90 1.59 1.00 1.00 1.06 1.14 1.16 1.16 1.15 1.15 1.08 1.00
1.00 2.80 1.29 1.33 3.70 1.18 1.40 2.80 1.85 1.64 1.41 1.90 1.40 1.15 1.22 1.13 1.17 1.16 1.06 1.00
1.00 1.26 2.30 3.70 1.90 0.66 1.12 1.12 1.41 1.24 1.25 1.64 2.80 1.15 1.18 1.09 1.07 1.16 1.30 1.00
1.00 1.44 1.16 1.41 1.00 1.90 1.90 1.30 1.41 1.26 1.41 1.23 1.16 1.30 0.95 1.18 0.96 0.97 0.34 1.00
1.00 1.09 1.06 1.00 3.50 1.49 1.16 1.09 1.71 1.22 1.09 1.05 1.08 1.08 1.05 1.16 0.78 1.01 1.05 1.00
1.00 1.04 1.41 1.36 1.16 1.22 1.22 1.10 1.06 1.00 1.05 1.15 1.10 1.13 1.06 1.17 1.07 1.04 1.11 1.00
1.00 1.67 1.76 1.67 0.82 1.18 1.00 1.11 1.13 1.16 1.22 1.21 1.27 1.16 1.33 1.21 1.13 1.40 1.20 1.00
1.00 1.16 1.36 1.72 1.15 1.13 1.08 1.04 1.12 1.08 1.16 2.21 3.20 1.64 1.11 2.80 1.26 1.33 1.52 1.00
1.00 1.05 1.15 1.08 1.06 1.08 1.13 1.18 1.52 1.09 2.11 1.59 1.41 1.16 2.80 2.08 1.57 1.71 2.21 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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L.4 FORTRAN Program: VI and NVI

* PROGRAM TO FIND THE DIFFERENCE BETWEEN CHANNEL 2 AND 3, *
* VI: (CH3 - CH2) AND TO FIND THE NVI: (CH3 - CH2)/(CH3 + CH2) *

INTEGER COLS, ROWS, I, J
REAL ARRAY (150,20), ARRAY1O (50,20), ARRAYll (50, 20)
REAL SUM

" Files where output will be stored

OPEN (UNIT = 31, FILE = 'imagell')
OPEN (UNIT = 32, FILE = 'imagel2')

"* Data will be read from external data file

READ *, ROWS, COLS

"* Fill the integer array

DO 10 I = 1, ROWS
READ *, (ARRAY (I, J), J = 1, COLS)

10 CONTINUE

* Subtract Channel 2 from Channel 3

DO 20 I = 1, 50
DO 30 J = 1, COLS

ARRAYlO (I, J) = ARRAY (I + 100, J) - ARRAY (I + 50, J)
30 CONTINUE
20 CONTINUE

* Print a title for Matrixl
PRINT *
PRINT *, 'VI: CHAN 3 - CHAN 2 OUTPUT'

PRINT *, '----------------------------------------------------
PRINT *

* Display Matrixi elements, row by row

DO 60 I = 1, 50
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PRINT 920, (ARRAYlO (I, J), J = 1, COLS)
WRITE (31, 920) (ARRAYlO (I,J), J = 1, COLS)

60 CONTINUE

* Calculate NVI: (Ch 3 - Ch 2)/(Ch 3 + Ch2)

DO 120 I = 1, 50
DO 130 J = 1, COLS

SUM = ARRAY (I + 100, J) + ARRAY (I + 50, J)
ARRAYll (I, J) = ARRAYIO (I , J) / SUM

130 CONTINUE
120 CONTINUE

* Print a title for Matrixi
PRINT *
PRINT *, 'NVI: (CH 3 - CH 2)/(CH 3 + CH 2) OUTPUT'
PRINT *, '--------------------------

PRINT *

* Display Matrixl elements, row by row

DO 160 I = 1, 50
PRINT 930, (ARRAY11 (I, J), J = 1, COLS)

WRITE (32, 930) (ARRAYll (I,J), J = 1, COLS)

160 CONTINUE

920 FORMAT (lOX, 50(F4.0,1X))
930 FORMAT (lOX, 50(F5.2,1X))

CLOSE (31)
CLOSE (32)

END
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L.5 FORTRAN Program: Near-IR/Red

* Program to compute Ch3/Ch2

INTEGER COLS, ROWS, I, J, COUNT
REAL RATIO, MAX
REAL ARRAY (150,50), ARRAY12 (50,20)

* Files where output will be stored

OPEN (UNIT = 33, FILE = 'imagel3')
OPEN (UNIT = 34, FILE = 'imagel4')

* Data will be read from external data file

READ *, ROWS, COLS

* Fill the integer array

DO 10 I = 1, ROWS
READ *, (ARRAY (I, J), J = 1, COLS)

10 CONTINUE

* Divide Channel 2 by Channel 3

DO 20 I = 1, 50
DO 30 3 = 1, COLS

ARRAYI2 (I, J) = ARRAY (I + 100, J) / ARRAY (I + 50, J)
30 CONTINUE
20 CONTINUE

* Print a title for Matrixi
PRINT *
PRINT *, 'CHAN 3 / CHAN 2 OUTPUT'
PRINT *, '----------------------------------------------------
PRINT *

* Display Matrix1 elements, row by row

DO 60 I = 1, 50
PRINT 900, (ARRAY12 (I, J), J = 1, COLS)

WRITE (33, 910) (ARRAY12 (I,J), J = 1, COLS)
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60 CONTINUE

900 FORMAT (lOX, 50(F4.2,lX))
910 FORMAT (lX, 50(F4.2,IX))
920 FORMAT (lOX, SO(F4.O,lX))

CLOSE (33)
CLOSE (34)

END
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Appendix M. GAMS/OSL Program and Summary Output

In this appendix is contained the Channel 1-3 program ran to find water regions

with area and border constraints of > 24 and < 48, respectively. I have also included

a summary of the output from this run. Note this program was not run on a VAX

using the GAMS/ZOOM solver. Rather, the program was run on an AIX RS/6000P

with the GAMS/OSL solver. This program not run at the Air Force Institute of

Technology, but rather at the GAMS Development Corporation (17).

M.1 GA MS/OSL Program

GAMS 2.25.056 AIX RS/600OP 12/07/92 16:01:50 PAGE
General Algebraic Modeling System
Comp ilat ion

42
43 SETS
44 I PIXEL LOCATION / 1*1000 /
45 K NUMBER OF SUBREGIONS TO FIND / 1 /
46 G IMAGING CHANNEL / A, C I;
47
48 ALIAS (I,J)
49 SETS
50 ADJ (I,J) ADJACENCY MATRIX
51 /1. (2,21)

Remaining 999 entries deleted to save space.
1054
1055 TABLE
1056
1057 C(I,G) COST OF EACH PIXEL
1058
1059 A C
1060
1061 1 999 999
Remaining 999 entries deleted to save space.
2062
2063 PARAMETERS
2064 M(K) PIXEL SIZE OF KTH SUBREGION
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2065 /1 24/
2066
2067 L(K) BORDER OF KTH SUBREGION
2068 /1 48/
2069
2070
2071
2072 VARIABLES
GAMS 2.25.056 AIX RS/6000P 12/07/92 16:01:50 PAGE 35
General Algebraic Modeling System
Compilat ion

2073 Z TOTAL COST OF ACQUIRED PIXELS
2074 X(I,K) BINARY VARIABLE
2075 P(IJ,K) BINARY VARIABLE
2076 N(I,J,K) BINARY VARIABLE
2077
2078 BINARY VARIABLES X,P,N;
2079
2080 EQUATIONS
2081 OBJ OBJECTIVE FUNCTION
2082 CI(K) CONSTRAINT FOR SIZE OF KTH SUBREGION
2083 C2(IJ,K) CONSTRAINT FOR CONTIGUITY
2084 C3(K) CONSTRAINT FOR BORDER LENGTH
2085 C4(I,JK) CONSTRAINT FOR P&N MUTUAL EXCLUSION
2086 C5(I) CONSTRAINT FOR SUBREGIONS;
2087
2088 OBJ
2089 Z =E= SUM((I,K), 0.1*C(I,"A")*X(I,K)
2090 + 0.9*C(I,"C")*X(I,K));
2091

2092 C1(K)..
2093 SUN(I,X(IK)) -G- N(K);
2094
2095 C2(I,JK) $ADJ(IJ)
2096 X(I,K) - X(J,K) - P(IJ,K) + N(I,JK) =Ew 0;
2',97

2098 C3(K)..
2099 SUM((I,J) $ADJ(IJ), P(I,J,K) + N(I,J,K)) =L= L(K);
2100
2101 C4(I,J,K) $ADJ(I,J)
2102 P(I,JK) + N(I,J,K) aLs 1;
2103
2104 CS(I)

298



2105 SUM(K, X(I,K)) =L= 1;
2106
2107 X.FX(I,"1")$(C(I,"A") GT 22) = 0;

.2108 X.FX(I,"I")$(C(I,"C") LT 5 OR C(I,"C") GT 200) = 0;
2109
2110
2111 MODEL SUBREGION /ALL/;
2112
2113 OPTIONS ITERLIM = 5000, RESLIM = 5000, WORK = 25000;
2114 option iterlim = 100000, reslim=5000;
2115
2116 SOLVE SUBREGION USING MIP MAXIMIZING Z;
2117
2118 DISPLAY X.L,P.LN.L,Z.L;
2119
2120
2121
2122

M.2 GAMS/OSL Summary Output

GAMS 2.25.056 AIX RS/600OP 12/07/92 16:01:50 PAGE 121
General Algebraic Modeling System
Model Statistics SOLVE SUBREGION USING MIP FROM LINE 2116

MODEL STATISTICS

BLOCKS OF EQUATIONS 6 SINGLE EQUATIONS 8723
BLOCKS OF VARIABLES 4 SINGLE VARIABLES 8721
NON ZERO ELEMENTS 33881 DISCRETE VARIABLES 7801

GENERATION TIME 57.220 SECONDS

EXECUTION TIME = 57.520 SECONDS VERID AIX-00-056

STEP SUMMARY: 0.070 STARTUP
2.690 COMPILATION

57.520 EXECUTION
0.450 CLOSEDOWN
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60.730 TOTAL SECONDS
GAMS 2.25.056 AIX RS/600OP 12/07/92 16:01:50 PAGE 122
General Algebraic Modeling System
Solution Report SOLVE SUBREGION USING MIP FROM LINE 2116

SOLVE SUMMARY

MODEL SUBREGION OBJECTIVE Z
TYPE NIP DIRECTION MAXIMIZE
SOLVER OSL FROM LINE 2116

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 8 INTEGER SOLUTION
**** OBJECTIVE VALUE 2253.2000

RESOURCE USAGE, LIMIT 465.120 5000.000
ITERATION COUNT, LIMIT 2813 100000

--- GAMS/OSL 2.001

Work space allocated -- 9.95 Mb

Relaxed optimum objective value: 2466.1000
Bound on best integer solution: 2466.1000
Objective value of this solution: 2253.2000

Relative gap: .08633 Absolute gap: 212.90000
Optcr : .10000 Optca: .0

The solution satisfies the termination tolerances

GAMS 2.25.056 AIX RS/600OP 12/07/92 16:01:50 PAGE 430
General Algebraic Modeling System
Execution

2118 VARIABLE X.L BINARY VARIABLE

1

528 1.000
529 1.000
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547 1.000
548 1.000
549 1.000
550 1.000
567 1.000
568 1.000
569 1.000
570 1.000
587 1.000
588 1.000
589 1.000
590 1.000
607 1.000
608 1.000
609 1.000
610 1.000
627 1.000
628 1.000
629 1.000
630 1.000
648 1.000
649 1.000
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Appendix N. Network Formulation of B&W Model

In this appendix, the B&W model is reformulated. This time, the model was

set up as a network with side constraints problemr. The software used to run this

problem was a combination of the following: SAS/OR NETFLOW, GAMS, and

Pascal programs (26:125-144). This formulation will attempt to improve upon the

performance of the modified model discussed in Chapters 3 and 4.

N.1 Computer Runs

A total of ten computer runs were made using the new formulation of the B&W

model. With these runs, I will be able to show if there is an improvement in the

model. A summary of the results are contained in Table 36. In this table the nomen-

clature for the "Title" column needs to be explained. The "S" and the first number

indicates the number of subregions to be found. The following numbers represent

the size of the subregion(s). For example, S2-1-5 indicates that two subregions are

to be found - one of size one and the second of size five. A complete listing of the

detailed results are included in this appendix.

N.1.1 Analysis of Computer Runs The new formulation of the B&W model

resulted in a measurable increase in performance. The solution time required on

the VAX computer was much quicker than the pure GAMS implementation of the

B&W model. However, this improvement resulted in another problem. In Table 36

several of the runs contain flows that did not remain integer. When this occurred,

the solution was not an optimal one. In the runs that did not maintain unitary

flows, the following combinations of the split flow were observed: (.5/.5), (.8/.2),

(.6/.2/.2), and (.6/.4). See the output of the computer runs for details.

'For an explaination of the network with side constraints, and Operations Research textbook

should be consulted. This appendix assumes the reader is familiar with this concept.
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Table 36. Results of Ten Runs
Run # Title [ Pixels Selected Total Cost

1 S1-2 18,19 2
2 S2-1-3 8/14,18,19 9
3 S2-1-4 * *

4 S2-1-4 18/8,9,14,19 15
5 S2-1-5 * *

6 S2-1-5 17/8,9,14,18,19 20
7 S2-2-2 14,19/17,18 9
8 s2-2-4 * *

9 s2-2-4 * *

10 s2-2-4 8,9/14,17,18,19 20
* Indicates flow did not remain integer

N.1.2 Conclusion on Network Formulation While the model efficiency in

solving the pixel subregion problem was improved, the flow at times did not re-

maind integer (unitary). More work is required to resolve this deficiency in the

network formualtion of the model.
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N.1.3 Run #1 (S1-2)

The SAS System 20:36 Tuesday, August 25, 1992 1

"N' 'FROM' 'TO COST CAPAC" -LO" 'NAME* 'SUPPLY

I ss &18 1 1 0 SSA18 1

2 al8 b19 I 1 0 A18B19

3 b19 dl 0 1 0 B19DI

"N" *DEMAND' 'FLOW FCOST "RCOST" 'STATUS'

1 I 1 KEY'ARC BASIC

2 1 1 KEY'ARC BASIC

3 1 1 0 KEY'ARC BASIC

1 The SAS System 20:36 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

1 data noded;

2 input 'node'S "sd';

3 cards;

NOTE: The data set WORK.NODED has 2 observations and 2 variables.

6

7 data arcd;

8 input "from'$ 'to*$ 'cost' 'capac" 'name'S;

9 cards;

NOTE: The data set WORK.ARCD has 42 observations and 5 variables.

52

53 data cond;

54 input

55 ssa7 ssa8 ssa9 ssal2 ss&13 ssal4 ssal7 ssal8 ssal9 a7b8

56 a7b12 a8b9 a8b13 a8b7 a9b14 a9b8 a12b7 &12b13 a12bl7 al3b8

57 a13b14 &13bh8 &13b12 a14h9 a14b19 a14b13 al7bI2 al7bl alSb13 al8bI9

58 al8bl7 a19b14 a19b18 b7dl bedi b9dl bl2dl bl3dl bl4dl bl~dl

59 blSdl bl9dI 'type'S 'rhs';

60 cards;
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NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 9 observations and 44 variables.

88

89 proc netflow

90 nodedata=noded

91 arcdata=arcd

92 condata=cond

93 conout-=solution;

94 run;

NOTE: Number of nodes= 20

NOTE: Number of supply nodes= 1

NOTE: Number of demand nodes= I

NOTE: Total supply= I , total demand= 1

NOTE: Number of arcs= 42 .

NOTE: Number of iterations performed (neglecting any constraints)= 23

NOTE: Of these, 21 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 2.

2 The SAS System 20:36 Tuesday, August 25, 1992

NOTE: Number of -= side constraints= 9 .

NOTE: Number of == side constraints= 0

NOTE: Number of Zc- side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 33

NOTE: Number of iterations, optimizing with constraints= I

NOTE: Of these, 0 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 2

NOTE: The data set WORK.SOLUTION has 42 observations and 14 variables.

95 print arcs/nonzero; run;

NOTE: The PROCEDURE NETFLOW printed page 1.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.4 Run #2 (S2-1-3)

The SAS System 20:54 Tuesday, August 25, 1992 1

'N' 'FROM* 'TO' COST CAPAC" *LO" 'NAME' 'SUPPLY'

I 8S &14 2 1 0 SSA14 2

2 6s a8 5 1 0 SSA8 2

3 a14 b19 I 1 0 A14B19

4 b19 c18 1 1 0 B19C18

5 as d( 0 1 0 A lD1

6 C18 d2 0 1 0 C18D2

"N" 'DEMAND' 'FLOW FCOST RCOST' 'STATUS*

1 1 2 KEY'ARC BASIC

2 1 5 NONKEY ARC BASIC

3 1 1 0 UPPERBD NONBASIC

4 1 1 KEY'ARC BASIC

5 1 0 KEY'ARC BASIC

6 1 1 0 KEY'ARC BASIC

The SAS System 20:54 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

1 data noded;

2 input 'node'S 'sd';

3 cards;

NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from*$ 'to'$ 'cost' 'capac" "nameS;

10 cards;

NOTE: The data set WORK.ARCD has 75 observations and 5 variables.

86

87 data cond;

88 input

89 ssa7 ss$ ssa&9 ss&12 ssal3 ss&14 ssal7 ss$&I ssal9 a7b8
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90 a&b12 &8b9 a8b13 a8b7 a9b14 agbg a12b7 a12b13 a12b17 a13b8

91 a13b14 a13b18 a13bI2 a14b9 a14b19 a14b13 a17b12 &17bb8 aI8bl3 aI8b19

92 a18b17 a&lbl4 a19b18 b7c8 b7c12 b8c9 b8c13 b8c7 b9c14 b9c8

93 b12c7 b12c13 b12cl7 bl3c8 b13c14 b13c18 b13c12 b14c9 b14c19 b14c13

94 bl7c12 b17c18 b18c13 b18c19 b18c17 b19c14 b19c18 a7dl a8dI a9dl

95 a12dl al3dl al4dl al7dl a18dl a19d1 c7d2 c8d2 c9d2 c12d2

96 c13d2 c14d2 c17d2 c18d2 c19d2 "typeS rhs;

97 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 9 observations and 77 variables.

125

126 proc netflow

127 nodedata=noded

128 arcdata=arcd

129 condata=cond

130 conout=solution;

131 run;

NOTE: Number of nodes= 30

NOTE: Number of supply nodes= I

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

NOTE: Number of arcs= 75 .

NOTE: Number of iterations performed (neglecting any constraints)= 49

2 The SAS System 20:54 Tuesday, August 25, 1992

NOTE: Of these, 44 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 4 .

NOTE: Number of i= side constraints= 9

NOTE: Number of == side constraints= 0

NOTE: Number of L= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 66

NOTE: Number of iterations, optimizing with constraints= 35

NOTE: Of these, 32 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 9

NOTE: The data set WORK.SOLUTION has 75 observations and 14 variables.

132 print arcs/nonzero; run;

NOTE: The PROCEDURE NETFLOW printed page 1.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.5 Run #3 (S2-1-4)

The SAS System 22:08 Tuesday, August 25, 1992 1

'N' 'FROM' 'TO' 'COST' "CAPAC LO NAME SUPPLY'

1 ss a14 2 1 0 SSA14 2

2 ss al8 1 1 0 SSA18 2

3 as a8 5 1 0 SSA8 2

4 a18 b2? 5 1 0 A18B17

5 &14 b19 1 1 0 A14B19

6 b19 c14 2 1 0 B19C14

7 b17 c18 1 1 0 B17C18

8 a8 dl 0 1 0 ASDI

9 c18 d17 5 1 0 C18D17

10 c14 d19 1 1 0 C14D19

11 d17 d2 0 1 0 D17D2

12 d19 d2 0 1 0 D19D2

"N' 'DEMAND' 'FLOW* "FCOST" "RCOST" "STATUS'

1 0.5 1 NONKEY ARC BASIC

2 0.5 0.5 NONKEY ARC BASIC

3 1 5 KEY'ARC BASIC

4 0.5 2.5 KEY'ARC BASIC

5 0.5 0.5 KEY'ARC BASIC

6 0.5 1 NONKEY ARC BASIC

7 0.5 0.5 KEY'ARC BASIC

a I 1 0 KEY'ARC BASIC

9 0.5 2.5 KEY'ARC BASIC

10 0.5 0.5 KEY'ARC BASIC

11 1 0.5 0 KEY'ARC BASIC

12 1 0.5 0 KEY'ARC BASIC

The SAS System 22:08 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified-

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

I data noded;

2 input 'node*S 'sd';

3 cards;
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NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from'$ 'to'$ 'cost' "capac' 'name'S;

10 cards;

NOTE: The data set WORK.ARCD has 99 observations and 5 variables.

110 i

III data cond;

112 input

113 ssa7 ssa8 ssa9 ssal2 ssa13 ssa14 ssa17 ssal8 ssal9 a7b8

114 a7b12 a8b9 a8b13 a8b7 a9b14 a9b8 a12b7 a12b13 a12b17 &13b8

115 a13b14 a13b18 a13b12 a14b9 a14b19 a14b13 a17b12 a17b18 al8bl3 a18b19

116 ai8b17 a19b14 a19b18 b7c8 b7c12 b8c9 b8c13 b8c7 b9c14 b9c8

117 b12c7 b12c13 b12c17 b13c8 b13c14 b13c18 b13c12 b14c9 b14c19 b14c13

118 b17c12 b17c18 b18c13 b18c19 bl8c17 b19c14 b19c18 c7d8 c7d12 c8d9

119 c8d13 c8d7 c9d14 c9d8 c12d7 c12d13 c12d17 c13d8 c13d14 c13d18

120 c13d12 c14d9 c14d19 c14d13 c17d12 c17d18 c18d13 c18d19 cI8d17 c19d14

121 c19d18 aldl a~dI a9dl al2dl al3dl al4dl al7dl al8dl al9dl

122 d7d2 d8d2 d9d2 d12d2 d23d2 d14d2 d17d2 dl8d2 d19d2 'type'$ "rhs';

123 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 9 observations and 101 variables.

160

161 proc netflow

162 nodedata=noded

163 arcdata=arcd

164 condata=cond

165 conout=solution;

166 run;

NOTE: Number of nodes= 39

NOTE: Number of supply nodes= I

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

2 The SAS System 22:08 Tuesday, August 25, 1992

NOTE: Number of arcs= 99

NOTE: Number of iterations performed (neglecting any constraints)= 67 .

NOTE: Of these, 60 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 5 .

NOTE: Number of i= side constraints= 9

NOTE: Number of == side constraints= 0

NOTE: Number of 1= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 90

NOTE: Number of iterations, optimizing with constraints= 15

NOTE: Of these, 12 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 14

NOTE: The data set WORK.SOLUTION has 99 observations and 14 variables.

167 print arcs/nonzero; run;
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NOTE: The PROCEDURE NETFLOW printed page I.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.6 Run #4 (S2-1-4)

The SAS System 22:24 Tuesday, August 25, 1992 1

"N' 'FROM' 'TO' 'COST' 'CAPAC" "LO- 'NAME' 'SUPPLY*

I as al8 1 1 0 SSA18 2

2 as a19 1 1 0 SSA19 2

3 a19 b14 2 1 0 A19B14

4 b14 c9 6 1 0 B14C9

5 al& dl 0 1 0 AIBDI

6 d8 d2 0 1 0 D8D2

7 c9 d8 5 1 0 C9D8

"N" *DEMAND FLOW FCOST RCOST" 'STATUS'

1 1 1 -99999997 UPPERBD NONBASIC

2 1 1 KEY'ARC BASIC

3 1 2 KEY'ARC BASIC

4 1 6 KEY'ARC BASIC

5 1 1 0 KEY'ARC BASIC

6 1 1 0 NONKEY ARC BASIC

7 1 5 KEY'ARC BASIC

The SAS System 22:24 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

I data noded;

2 input 'node'S "sd';

3 cards;

NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from'$ 'to'S 'cost' "capac" 'name'S;

10 cards;

NOTE: The data set WORKARCD has 99 observations and 5 variables.

110

111 data cond;

311



112 input

113 asAT s&a8 sA9 esa12 s#&13 ssa14 sSe17 seal8 sa6S19 &7b

114 aTb12 aSb9 a8b13 aSb7 a9b14 agb8 &12b7 &12b13 a12b17 a13b8

115 &13b14 &13bh8 a13b12 a14b9 A14b19 &14b13 a17b12 aITbI8 al8b13 aIbI9

116 alSbl7 algbI4 algbl8 b7cS bic12 b8c9 b8c13 b8c7 b9c14 b9c8

117 b12c7 b12c13 b12c17 bl3eS b13c14 b13c18 b13c12 b14c9 b1icI9 b14c13

118 b17c12 b17c18 b18c13 b18cI9 b18ci7 b19c14 bI9¢c8 c7d8 c7d12 c8d9

119 c8d13 c8d7 c9d14 c9d8 c12d7 c12d13 c12d17 c13d8 c13d14 c13d18

120 c13d12 c14d9 c14d19 c14d13 c17d12 cI7dI8 c18d13 c18d19 cldl7 c19d14

121 cl9dl8 aTdl aSdl agdi al2dl al3dl a14dI aWdl a&8d1 algdl

122 dTd2 d8d2 d9d2 d12d2 d13d2 d14d2 d17d2 dlgd2 d19d2 'type'S "rhs';

123 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 10 observations and 101 variables.

164

165 proc netflow

166 nodedata=noded

167 arcdata=arcd

168 condata=cond

169 conout=solution;

170 run;

NOTE: Number of nodes= 39

NOTE: Number of supply nodes= 1

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

2 The SAS System 22:24 Tuesday, August 25, 1992

NOTE: Number of arcs= 99 .

NOTE: Number of iterations performed (neglecting any constraints)= 67 .

NOTE: Of these, 60 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 5 .

NOTE: Number of i= side constraints= 9

NOTE: Number of -- side constraints= I

NOTE: Number of i= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 91

NOTE: Number of iterations, optimizing with constraints= 16

NOTE: Of these, 14 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 15

NOTE: The data set WORKSOLUTION has 99 observations and 14 variables.

171 print arcs/nonzero; run;

NOTE: The PROCEDURE NETFLOW printed page I.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.7 Run #5 (S2-1-5)

The SAS System 22:33 Tuesday, August 25, 1992 1

'N* 'FROM' 'TO' 'COST' 'CAPAC* -LO" 'NAME 'SUPPLY'

I sd a14 2 1 0 SSA14 2

2 as 17 5 1 0 SSAI7 2

3 ss a18 1 1 0 SSA18 2

4 as a8 5 1 0 SSA8 2

5 as a9 6 1 0 SSA9 2

6 aIs b17 5 1 0 A18B17

7 a17 b18 I 1 0 A17BI8

8 &14 b19 I 1 0 A14B19

9 a9 b8 5 1 0 AB18

10 a8 b9 6 1 0 A8B9

11 b19 c14 2 1 0 B19C14

12 b17 c18 1 1 0 BI7CI8

13 big c19 1 1 0 B18C19

14 b9 c8 5 1 0 B9C8

15 b8 c9 6 1 0 B8C9

16 a17 dl 0 1 0 A17D1

17 a18 dl 0 1 0 A18DI

18 c19 d14 2 1 0 C19D14

19 c14 d19 1 1 0 C14D19

20 c18 d19 1 1 0 C18D19

21 e8 d2 0 1 0 E8D2

22 e9 d2 0 1 0 E9D2

23 e14 d2 0 1 0 E14D2

24 el9 d2 0 1 0 EI9D2

25 c9 d8 5 1 0 C9D8

26 c8 d9 6 1 0 C8D9

27 d19 e14 2 1 0 D19E14

28 d14 e19 I 1 0 D14E19

29 d9 e8 5 1 0 D9E8

30 d8 e9 6 1 0 D8E9

N" 'DEMAND* 'FLOW' 'FCOST' "RCOST 'STATUS*

1 0.2 0.4 KEY'ARC BASIC

2 0.8 4 KEY'ARC BASIC

3 0.6 0.6 KEY'ARC BASIC

4 0.2 1 KEY'ARC BASIC

5 0.2 1.2 KEY'ARC BASIC

6 0.2 1 NONKEY ARC BASIC

7 0.2 0.2 KEY'ARC BASIC

8 0.2 0.2 NONKEY ARC BASIC

9 0.2 1 KEY'ARC BASIC

10 0.2 1.2 KEY'ARC BASIC

11 0.2 0.4 KEY'ARC BASIC

12 0.2 0.2 KEYAARC BASIC

13 0.2 0.2 KEY'ARC BASIC

14 0.2 1 KEY'ARC BASIC

15 0.2 1.2 KEY'ARC BASIC

16 1 0.6 0 NONKEY ARC BASIC

17 1 0.4 0 KEY'ARC BASIC

is 0.2 0.4 KEY'ARC BASIC

19 0.2 0.2 KEY'ARC BASIC
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20 0.2 0.2 KEY'ARC BASIC

21 1 0.2 0 NONKEY ARC BASIC

22 1 0.2 0 KEY'ARC BASIC

23 1 0.4 0 KEY'ARC BASIC

The SAS System 22:33 Tuesday, August 25, 1992 2

"N" 'DEMAND' 'FLOW* "FCOST" "RCOST" 'STATUS'

24 1 0.2 0 NONKEY ARC BASIC

25 0.2 1 NONKEY ARC BASIC

26 0.2 1.2 KEY'ARC BASIC

27 0.4 0.8 KEY'ARC BASIC

28 0.2 0.2 KEY'ARC BASIC

29 0.2 1 KEY'ARC BASIC

30 0.2 1.2 KEY'ARC BASIC

The SAS System 22:33 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing %he NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

I data noded;

2 input 'node'S "sd';

3 cards;

NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input *from*$ 'to*$ 'cost* 'capac" 'nameS;

10 cards;

NOTE: The data set WORK.ARCD has 123 observations and 5 variables.

134

135 data cond;

136 input

137 ssa7 ssa8 ssa9 ssal2 ssal3 ss&14 sal7 ssal68 ssal9 &7b8

138 a7b12 &8b9 &8b13 aSb7 a9b14 a9b8 a12b7 a12b13 a12bI7 &a3b8

139 a13b14 a13b18 &13b12 a14b9 a14b19 a14b13 171b12 aI7b18 &18b13 alSbl9

140 aI8b17 a19b14 al9bl8 bTcS b~c12 b8c9 b8c13 b8c7 b9c14 b9cg

141 b12c7 b12c13 b12cl7 bl3c8 b13c14 b3c:18 bl3cI2 b14c9 b14c19 b14c13

142 b17c12 bl7clS b18c13 b16cl9 b18c17 b19c14 b19cl8 c7d8 c7d12 c8d9

143 c8d13 c8d7 c9d14 c9d8 c12d7 c12d13 c12d17 cl3d8 c13d14 c13d18
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144 c13d12 cl4d9 c14d19 c14d13 c17d12 c17d18 c18d13 c18d19 cl8d17 c19d14

145 c19d18 d7e8 d~e12 d8e9 d8e13 d8e7 d9e14 d9e8 dl2e7 d12e13

146 d12e17 d13e8 dl3el4 d13e18 d13e12 d14e9 d14e19 d14e13 d17e12 dl7el8

147 dl8el3 dl8e19 dl8el7 d19e14 dl9el8 a7dl a8dl a9dl a12dl a13d1

148 al4dl al7dl al8dl al9d1 e7d2 e8d2 e9d2 e12d2 e13d2 e14d2

149 e17d2 el8d2 e19d2 "type'S 'rhs';

150 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 9 observations and 125 variables.

196

197 proc netfiow

198 nodedata=noded

199 arcdata=arcd

200 condata=cond

201 conout=solution;

202 run;

NOTE: Number of nodes= 48

2 The SAS System 22:33 Tuesday, August 25, 1992

NOTE: Number of supply nodes= I

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

NOTE: Number of arcs= 123

NOTE: Number of iterations performed (neglecting any constraints)= 74

NOTE: Of these, 66 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 6 .

NOTE: Number of i= side constraints= 9 .

NOTE: Number of == side constraints= 0

NOTE: Number of 1= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 114

NOTE: Number of iterations, optimizing with constraints= 37

NOTE: Of these, 26 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 20

NOTE: The data set WORK.SOLUTION has 123 observations and 14 variables.

203 print arcs/nonzero; run;

NOTE: The PROCEDURE NETFLOW printed pages 1-2.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.8 Run #6 (S2-1-5)

The SAS System 22:42 Tuesday, August 25, 1992 1

"N' 'FROM' 'TO' "COST' "CAPAC" *LO' *NAME' "SUPPLY'

1 ss &1? 5 1 0 SSA17 2

2 as &18 1 1 0 SSA18 2

3 &18 b19 1 1 0 A18B19

4 b19 c14 2 1 0 B19C14

5 &17 dl 0 1 0 Ai1DI

6 e8 d2 0 1 0 E8D2

7 c14 d9 6 1 0 C14D9

8 d9 e8 5 1 0 D9E8

'N" *DEMAND* 'FLOW' "FCOST" "RCOST" *STATUS'

1 1 5 . KEY'ARC BASIC

2 1 1 -3 UPPERBD NONBASIC

3 1 1 KEY'ARC BASIC

4 1 2 KEY'ARC BASIC

5 1 0 0 UPPERBD NONBASIC

6 1 1 0 KEY'ARC BASIC

7 1 6 KEY'ARC BASIC

8 1 5 0 UPPERBD NONBASIC

The SAS System 22:42 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number OB000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

I data noded;

2 input *node'S "sd*;

3 cards;

NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from'$ 'to'$ *cost' "capac" "nameS;

10 cards;

NOTE: The data set WORK.ARCD has 123 observations and 5 variables.

134
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135 data cond;

136 input

137 ssa7 s5s8 ssa9 ssal2 ssal3 ss&a4 s3al7 SsA18 ssal9 a7b8

138 a7b12 a8b9 a8b13 a8b7 a9b14 a9b8 a12b7 a12b13 a12b17 al3b8

139 a13b14 a13b18 a13b12 &14b9 a14b19 a14b13 a17b12 a17b18 a18b13 a18bl9

140 a18b17 &19b14 a19b18 b~c8 b7c12 b8c9 b8c13 b8c7 b9c14 b9c8

141 b12c7 b12c13 b12c17 b13c8 b13c14 b13c18 b13c12 b14c9 b14c19 b14c13

142 b17c12 b17c18 b18c13 b18c19 b18c17 b19c14 bI9c18 c7d8 c7dI2 c8d9

143 c8d13 c8d7 c9d14 c9d8 c12d7 c12d13 c12d17 c13d8 c13d14 c13d18

144 c13d12 c14d9 c14d19 c14d13 c17d12 c17d18 c18d13 c18d19 c18d17 c19d14

145 c19d18 d7e8 d7e12 d8e9 d8e13 d8e7 d9e14 d9e8 d12e7 d12eI3

146 d12e17 d13e8 d13e14 d13e18 d13e12 d14e9 d14e19 d14e13 d17e12 d17e18

147 dI8e13 d18e19 dI8e17 d19e14 d19e18 a7dl a8dl a9dl aI2dl al3dl

148 a&4dl a17dI al8dl a19dl e7d2 e8d2 e9d2 e12d2 e13d2 e14d2

149 el7d2 e18d2 el9d2 'type'S "rhs';

150 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 10 observations and 125 variables.

201

202 proc netflow

203 nodedata=noded

204 arcdata=arcd

205 condata=cond

206 conout-=solution;

207 run;

NOTE: Number of nodes= 48

2 The SAS System 22:42 Tuesday, August 25, 1992

NOTE: Number of supply nodes= I

NOTE: Number of demand nodes= 2 .

NOTE: Total supply= 2 , total demand= 2

NOTE: Number of arcs= 123 .

NOTE: Number of iterations performed (neglecting any constraints)= 74

NOTE: Of these, 66 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 6 .

NOTE: Number of i= side constraints= 9

NOTE: Number of -= side constraints= 1

NOTE: Number of i= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 116

NOTE: Number of iterations, optimizing with constraints= 73

NOTE: Of these, 64 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 20

NOTE: The data set WORKSOLUTION has 123 observations and 14 variables.

208 print arcs/nonzero; run;

NOTE: The PROCEDURE NETFLOW printed page 1.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.9 Run #7 (S2-2-2)

The SAS System 22:52 Tuesday, August 25, 1992

'N" 'FROM TO COST CAPAC 'LO' 'NAME' 'SUPPLY'

1 ss a14 2 1 0 SSAA4 2

2 ss &17 5 1 0 SSA17 2

3 a17 b18 1 1 0 A17B18

4 a14 b19 1 1 0 A14B19

5 b18 dl 0 1 0 BI8DI

6 b19 d2 0 1 0 B19D2

'N' 'DEMAND' 'FLOW* "FCOST" "RCOST' *STATUS*

1 1 2 KEY*ARC BASIC

2 1 5 KEY'ARC BASIC

3 1 1 NONKEY ARC BASIC

4 1 1 KEY'ARC BASIC

5 1 1 0 KEY'ARC BASIC

6 1 1 0 0 UPPERBD NONBASIC

The SAS System 22:52 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number OB000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

1 data noded;

2 input 'node'S 'sd';

3 cards;

NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from'S 'to'$ 'cost' "capac" "nameS;

10 cards;

NOTE: The data set WORK.ARCD has 51 observations and 5 variables.

62

63 data cond;

64 input

65 ssa7 ss&as ssa9 ssa12 ssal3 ssal4 ssal7 stale ssal9 a7b8

66 a7b12 a8b9 a8b13 aJb7 a9b14 a9bS a12b7 a12b13 a12b17 al3b8
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67 a13b14 al3bl8 a13b12 a14b9 a14b19 a14b13 a17bl2 al7bl8 al8b13 a&lbl9

68 alabi7 a19b14 a19bl8 b7dl b8dl b9dl bl2dl b13dl bl4dl bl7dl

69 bladl bl9dl bTd2 b8d2 b9d2 b12d2 b13d2 b14d2 bl7d2 bl8d2

70 b19d2 typeS rhs;

71 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 9 observations and 53 variables.

99

100 proc netflow

101 nodedata=noded

102 arcdata=arcd

103 condata=cond

104 conout=solution;

105 run;

NOTE: Number of nodes= 21

NOTE: Number of supply nodes= I

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

NOTE: Number of arcs= 51 .

NOTE: Number of iterations performed (neglecting any constraints)= 33

NOTE: Of these, 29 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

2 The SAS System 22:52 Tuesday, August 25, 1992

NOTE: Minimal total cost= 4 .

NOTE: Number of i= side constraints= 9 .

NOTE: Number of == side constraints= 0

NOTE: Number of i= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 42

NOTE: Number of iterations, optimizing with constraints= 10

NOTE: Of these, 6 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 9

NOTE: The data set WORKSOLUTION has 51 observations and 14 variables.

106 print arcs/nonzero; run;

NOTE: The PROCEDURE NETPLOW printed page 1.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.1O Run #8 (S2-2-4)

The SAS System 23:27 Tuesday, August 25, 1992 1

"N' 'FROM' 'TO' 'COST* "CAPAC' "LO' 'NAME* 'SUPPLY'

I ss a14 2 1 0 SSA14 2

2 ss al? 5 1 0 SSA17 2

3 ss a8 5 1 0 SSA8 2

4 a17 big 1 1 0 Ai7B18

5 a14 b19 1 1 0 AI4BI9

6 a8 b9 6 1 0 A8B9

7 bi8 c17 5 1 0 B18C17

8 b9 c8 5 1 0 B9C8

9 b19 dl 0 1 0 B19DI

10 c1? dig 1 1 0 C17D18

11 d9 d2 0 1 0 D9D2

12 diS d2 0 1 0 DJ8D2

13 c8 d9 6 1 0 C8D9

"N' 'DEMAND' 'FLOW' "FCOST' "RCOST STATUS'

1 1 2 KEY'ARC BASIC

2 0.5 2.5 KEY'ARC BASIC

3 0.5 2.5 KEY'ARC BASIC

4 0.5 0.5 NONKEY ARC BASIC

5 1 1 KEY'ARC BASIC

6 0.5 3 NONKEY ARC BASIC

7 0.5 2.5 KEY ARC BASIC

8 0.5 2.5 NONKEY ARC BASIC

9 1 1 0 NONKEY ARC BASIC

10 0.5 0.5 KEY'ARC BASIC

11 1 0.5 0 KEY'ARC BASIC

12 1 0.5 0 KEY'ARC BASIC

13 0.5 3 KEY'ARC BASIC

The SAS System 23:27 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

I data noded;

2 input 'node'S "sd';

3 cards;
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NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from'$ 'to'S 'cost* "capac" *name'S;

10 cards;

NOTE: The data set WORK.ARCD has 99 observations and 5 variables.

110

111 data cond;

112 input

113 ssa7 ssa8 ssa9 ssa12 ssa13 ssa14 ssal7 ssal8 ssa19 a7b8

114 a7b12 a8b9 a8bl3 a8b7 a9b14 a9b8 &12b7 a12b13 al2b17 al3b8

115 a13b14 a13bI8 a13b12 al4b9 a14b19 a14b13 al7b12 al7bl8 &18bl3 a18b19

116 a18bI? a19b14 al9b18 b7c8 b7c12 b8c9 b8c13 b8c7 b9c14 b9c8

117 b12c7 b12c13 b12c17 b13c8 b13c14 b13c18 b13c12 b14c9 b14c19 b14c13

118 b17c12 b17c18 b18c13 b18c19 b18c17 b19c14 b19c18 c7d8 c7d12 c8d9

119 c8d13 c8dT c9d14 c9d8 cl2d7 c12d13 c12d17 c13d8 c13d14 c13d18

120 c23d12 c14d9 c14d19 c14d13 c17d12 c17d18 c18d13 c18d]9 c18d17 c]9d14

121 c19d18 b7dl b8dl b9dl bl2dl bl3dl bl4dl blTdl bl8dl bl9dl

122 d7d2 d8d2 d9d2 d12d2 d13d2 d14d2 dl7d2 dl8d2 d19d2 'type'S 'rho*;

123 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 9 observations and 101 variables.

160

161 proc netflow

162 nodedata=noded

163 arcdata=arcd

164 condata=cond

165 conout~solution;

166 run;

NOTE: Number of nodes= 39

NOTE: Number of supply nodes= I

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

2 The SAS System 23:27 Tuesday, August 25, 1992

NOTE: Number of arcs= 99

NOTE: Number of iterations performed (neglecting any constraints)= 70

NOTE: Of these, 64 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 6 .

NOTE: Number of i= side constraints= 9 .

NOTE: Number of == side constraints= 0

NOTE: Number of ,I= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 90

NOTE: Number of iterations, optimizing with constraints= 30

NOTE: Of these, 20 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 20

NOTE: The data set WORK.SOLUTION has 99 observations and 14 variables.

167 print arcs/nonzero; run;
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NOTE: The PROCEDURE NETFLOW printed page I.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512.8000

322



N.1.11 Run #9 (S2-2-4)

The SAS System 23:39 Tuesday, August 25, 1992 1

"N" 'FROM' 'TO' 'COST' "CAPAC" *LO 'NAME SUPPLY*

1 ss &14 2 1 0 SSAI4 2

2 ss al8 I 1 0 SSAI8 2

3 ss a8 5 1 0 SSA8 2

4 aI8 b17 5 1 0 A18B17

5 a14 b19 1 1 0 A14B19

6 a8 b9 6 1 0 A8B9

7 b19 c14 2 1 0 B19C14

8 b17 c18 1 1 0 B17C18

9 b9 dl 0 1 0 B9DI

10 c18 d17 5 1 0 C18D17

11 c14 d19 1 1 0 C14D19

12 d17 d2 0 1 0 D17D2

13 d19 d2 0 1 0 D19D2

"N" 'DEMAND' "FLOW' "FCOST" "RCOST" *STATUS'

1 0.5 1 NONKEY ARC BASIC

2 0.5 0.5 KEY'ARC BASIC

3 1 5 -99999999 UPPERBD NONBASIC

4 0.5 2.5 NONKEY ARC BASIC

5 0.5 0.5 KEY'ARC BASIC

6 1 6 0 UPPERBD NONBASIC

7 0.5 1 KEY'ARC BASIC

8 0.5 0.5 KEY'ARC BASIC

9 1 1 0 KEY'ARC BASIC

10 0.5 2.5 NONKEY ARC BASIC

11 0.5 0.5 KEY'ARC BASIC

12 1 0.5 0 KEY'ARC BASIC

13 1 0.5 0 KEY'ARC BASIC

The SAS System 23:39 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

I data noded;

2 input 'node'$'sd';

3 cards;
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NOTE: The data set WORKNODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from'$'to'$ 'cost' 'capac' 'nameS;

10 cards;

NOTE: The data set WORK.ARCD has 99 observations and 5 variables.

110

111 data cond;

112 input

113 ss&7 ssa8 ssa9 ssal2 ssa13 ssal4 ssal7 ssa18 ssal9 a7b8

114 a7b12 a8b9 a8bl3 a8b7 a9b14 a9b8 a12b7 a12b13 a12b17 aLb8

115 a13b14 a13bl8 a13b12 &14b9 a14b19 a14b13 a17b12 a17bl8 a18b13 al8bl9

116 al8bl7 a19b14 a19b18 b7c8 b7c12 b8c9 b8c13 b8c7 b9c14 b9c8

117 b12c7 b12c13 b12c17 b13c8 b13c14 b13c18 b13c12 b14c9 b14c19 b14c13

118 b17c12 b17c18 b18c13 b18c19 b18c17 b19c14 b19c18 c7d8 c7d12 c8d9

119 c8d13 c8d7 c9d14 c9d8 c12d7 c12d13 c12d17 c13d8 cl3dlA c13d18

120 c13d12 c14d9 c14d19 c14d13 cl7dl2 cl7d18 c18d13 c18d19 c18d17 c19d14

121 c19d18 b7dl b8dl b9dl bl2dl bl3dl bl4dl bl7dl bl8dl bl9dl

122 d7d2 d8d2 d9d2 d12d2 d13d2 d14d2 d17d2 d18d2 d19d2 'type'S *rhs';

123 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 10 observations and 101 variables.

164

165 proc netflow

166 nodedata=noded

167 arcdata=arcd

168 condata=cond

169 conout=solution;

170 run;

NOTE: Number of nodes= 39

NOTE: Number of supply nodes= 1

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

2 The SAS System 23:39 Tuesday, August 25, 1992

NOTE: Number of arcs= 99 .

NOTE: Number of iterations performed (neglecting any constraints)= 70

NOTE: Of these, 64 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 6 .

NOTE: Number of i= side constraints= 9

NOTE: Number of == side constraints= I

NOTE: Number of 4= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 91

NOTE: Number of iterations, optimizing with constraints= 38

NOTE: Of these, 32 were degenerate.

NOTE: Optimum re..:,ed.

NOTE: Minimal total cost= 20

NOTE: The data set WORK.SOLUTION has 99 observations and 14 variables.

171 print arcs/nonzero; run;
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NOTE: The PROCEDURE NETFLOW printed page 1.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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N.1.12 Run #10 (S2-2-4)

The SAS System 23:51 Tuesday, August 25, 1992 1

"N" 'FROM 'TO' 'COST' "CAPAC" 'LO' 'NAME SUPPLY

I SS a14 2 1 0 SSA14 2

2 ss a8 5 1 0 SSA8 2

3 a14 b19 1 1 0 A14B19

4 a8 b9 6 1 0 A8B9

5 b19 c18 I 1 0 B19C18

6 b9 dl 0 1 0 B9D1

7 c18 d17 5 1 0 C18D17

8 d17 d2 0 1 0 D17D2

N DEMAND* 'FLOW* "FCOST" "RCOST' *STATUS'

1 1 2 KEY*ARC BASIC

2 1 5 KEYARC BASIC

3 1 1 KEY'ARC BASIC

4 1 6 3.885781E.16 UPPERBD NONBASIC

5 1 1 KEY'ARC BASIC

6 1 I 0 KEY'ARC BASIC

7 . 5 3.330669E-16 UPPERBD NONBASIC

8 1 I 0 KEY'ARC BASIC

I The SAS System 23:51 Tuesday, August 25, 1992

NOTE: Copyright(c) 1989 by SAS Institute Inc., Cary, NC USA.

NOTE: SAS (r) Proprietary Software Release 6.06.01

Licensed to AIR FORCE INSTITUTE OF TECHNOLOGY, Site 0003357011.

NOTE: Running on VAX Model 6000-420 Serial Number 0B000006.

Welcome to the new SAS System, Release 6.06.

This message is seen by users when the NEWS option is specified.

You can replace this message with your own by editing the NEWS file.

Changes and enhancements available in SAS Release 6.06 are documented

in the online Host Help.

I data noded;

2 input 'node'S "sd';

3 cards;

NOTE: The data set WORK.NODED has 3 observations and 2 variables.

7

8 data arcd;

9 input 'from*$ to'S 'cost' "capac' 'name'S;

10 cards;

NOTE: The data set WORK.ARCD has 99 observations and 5 variables.

110
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111 data cond;

112 input

113 ssa7 $sa8 ssa9 ssa12 ssa13 ssal4 ssal7 ssa18 ssal9 a7b8

114 a7b12 a8b9 a8b13 a8b7 a9b14 a9b8 a12b7 a12b13 a12b17 a13b8

115 a13b14 al3b18 a13b12 a14b9 a14b19 a14b13 a17b12 al7bi8 a18b13 &18bl9

116 al8b17 al9bl4 a19b18 b7c8 b7c12 b8c9 b8c13 b8c7 b9c14 b9c8

117 b12c7 b12cl3 b12c17 b13c8 b13c14 b13c18 b13c12 b14c9 b14c19 b14c13

118 b17,12 b17c18 b18c13 b18c19 b18c17 b19c14 b19c18 c7d8 cTdI2 c8d9

119 c8d13 c8d7 c9d14 c9d8 c12d7 c12d13 c12d17 c13d8 c13d14 c13d18

120 c13d12 c14d9 c14d19 c14d13 c17d12 c17dl8 c18dl3 c18d19 c18d17 c19d14

121 c19d18 b7dl b8dl b9dl b12di bl3d1 b14dl bl7dl b18d1 b19d1

122 d7d2 d8d2 d9d2 d12d2 d13d2 d14d2 dl7d2 dl8d2 d19d2 'type'S "rhs';

123 cards;

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.COND has 10 observations and 101 variables.

164

165 proc netflow

166 nodedata=noded

167 arcdata=arcd

168 condata=cond

169 conout=solution;

170 run;

NOTE: Number of nodes= 39

NOTE: Number of supply nodes= I

NOTE: Number of demand nodes= 2

NOTE: Total supply= 2 , total demand= 2

2 The SAS System 23:51 Tuesday, August 25, 1992

NOTE: Number of arcs= 99 .

NOTE: Number of iterations performed (neglecting any constraints)= 70

NOTE: Of these, 64 were degenerate.

NOTE: Optimum (neglecting any constraints) found.

NOTE: Minimal total cost= 6 .

NOTE: Number of i= side constraints= 9

NOTE: Number of == side constraints= I

NOTE: Number of Z= side constraints= 0

NOTE: Number of arc and nonarc variable side constraint coefficients= 92

NOTE: Number of iterations, optimizing with constraints= 29

NOTE: Of these, 24 were degenerate.

NOTE: Optimum reached.

NOTE: Minimal total cost= 20

NOTE: The data set WORK.SOLUTION has 99 observations and 14 variables.

171 print arcs/nonzero; run;

NOTE: The PROCEDURE NETFLOW printed page 1.

NOTE: SAS Institute Inc., SAS Circle, PO Box 8000, Cary, NC 27512-8000
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